PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrogeochemistry and magnitude of SGD in the Bay of Puck, southern Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work reports the hydrogeochemistry of submarine groundwater discharge (SGD) in the Bay of Puck, southern Baltic Sea. To understand the seasonal and spatial variability of SGD, groundwater and seawater-based SGD samples were collected in several sites in November 2017, March 2018, May 2018 and July 2018. Additionally, a vertical, one-dimensional, advection-diffusion model was used to estimate SGD in each site. The obtained results ranged from to 1.8 ×10-7 L cm-2 s-1 to 2.8 ×10-7 L cm-2 s-1 and depended on both: short-timescale factors (wind direction and monthly precipitation) and long-timescale factors (total precipitation and large-scale sea level variations). The calculated rates were further extrapolated to the entire Bay of Puck and ranged from 16.0 m3 s-1 to 127.7 m3 s-1. The estimated SGD fluxes were significantly higher than results including only the freshwater component of SGD. In the Baltic Sea the importance of SGD, as a source of water and accompanying chemical substances, is still neglected, however, the present findings indicate that locally SGD can be higher than rivers runoff.
Czasopismo
Rocznik
Strony
1--11
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Appelo, C., Postma, D., 2005. Geochemistry, Groundwater and Pollution, 2nd edn. Balkema, Rotterdam, 683 pp., http://dx.doi.org/10.1201/9781439833544.
  • [2] Bolałek, J., 1992. Ionic macrocomponents of the interstitial waters of Puck Bay sediments. Oceanologia 33, 131-158.
  • [3] Boudreau, B. P., 1997. Diagenetic Models and Their implementation: Modelling Transport and Reactions in Aquatic Sediments. Springer-Verlag, Berlin, Heidelberg, New York, 414 pp.
  • [4] Bublijewska, E., Łęczyński, L., Marciniak, M., Chudziak, Ł., Kłostowska, Ż., Zarzeczańska, D., 2017. In situ measurements of submarine groundwater supply from the Puck Lagoon. Prz. Geol. 65 (11-2), 1173-1178.
  • [5] Burnett, W. C., Bokuniewicz, H., Huettel, M., Moore, W. S., Taniguchi, M., 2003. Groundwater and pore water inputs to the coastal zone. Biogeochemistry 66 (1-2), 3-33, https://doi.org/10.1023/B:BIOG.0000006066.21240.53.
  • [6] Burnett, W. C., Aggarwal, P. K., Aureli, A., Bokuniewicz, H., Cable, J. E., Charette, M. A., Kontar, E., Krupa, S., Kulkarni, K. M., Loveless, A., Moore, W. S., Oberdorfer, J. A., Oliveira, J., Ozyurt, N., Povinec, P., Privitera, A. M. G., Rajar, R., Ramessur, R. T., Scholten, J., Stieglitz, T., Taniguchi, M., Turner, J. V., 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ. 367 (2-3), 498-543, https://doi.org/10.1016/j.scitotenv.2006.05.009.
  • [7] Cai, W.-J., Wang, Y.-C., Krest, J., Moore, W. S., 2003. The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean. Geochim. Cosmochim. Ac. 67 (4), 631-639, https://doi.org/10.1016/S0016-7037(02)01167-5.
  • [8] Carman, R., Rahm, L., 1997. Early diagenesis and chemical characteristics of interstitial water and sediments in the deep deposition bottoms of the Baltic proper. J. Sea Res. 37 (1-2), 25-47, https://doi.org/10.1016/S1385-1101(96)00003-2.
  • [9] Charette, M. A., Sholkovitz, E. R., 2002. Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay. Geophys. Res. Lett. 29 (10), 85-1-85-4, https://doi.org/10.1029/2001GL014512.
  • [10] Charette, M. A., Sholkovitz, E. R., 2006. Trace element cycling in a subterranean estuary: part 2. Geochemistry of the pore water. Geochim. Cosmochim. Ac. 70 (40), 811-826, https://doi.org/10.1016/j.gca.2005.10.019.
  • [11] Cyberski, J., 1993. Hydrologia zlewiska. In: Korzeniewski, K. (Ed.), Zatoka Pucka. Fundacja Rozwoju Uniwersytetu Gdańskiego, Gdańsk, 40-70.
  • [12] Hounslow, A. W., 1995. Water Quality Data: Analysis and Interpretation. CRC Press LLC, Lewis Publishers, Boca Raton, 416 pp., https://doi.org/10.1201/9780203734117.
  • [13] Institute of Meteorology and Water Management (IMGW) database, https://dane.imgw.pl/data, (accessed on 21.08.2019).
  • [14] Jiao, J., Post, V., 2019. Coastal Hydrogeology. Cambridge University Press, Cambridge, 404 pp., https://doi.org/10.1017/9781139344142.
  • [15] Kaleris, V., 2018. Submarine groundwater discharge and its influence on the coastal environment. Available from: http://www.coastalwiki.org/wiki/Submarine_groundwater_discharge_and_its_influence_on_the_coastal_environment, (accessed on 20-08-2019).
  • [16] Kotwicki, L., Grzelak, K., Czub, M., Dellwig, O., Gentz, T., Szymczycha, B., Böttcher, M. E., 2014. Submarine groundwater discharge to the Baltic coastal zone: impacts on the meiofaunal community. J. Marine Syst. 129, 118-126, https://doi.org/10.1016/j.jmarsys.2013.06.009.
  • [17] Kozerski, B., 2007. In: Jaworska-Szulc, B., Piekarek-Jankowska, H., Pruszkowska, M., Przewłócka, M. (Eds.), Gdański System Wodonośny. Wydawnictwo Politechniki Gdańskiej, Gdańsk, 113 pp.
  • [18] Krall, L., Trezzi, G., Garcia-Orellana, J., Rodellas, V., Morth, C.-M., Andersson, M., 2017. Submarine groundwater discharge at Forsmark, Gulf of Bothnia, provided by Ra isotopes. Mar. Chem. 196, 162-172, https://doi.org/10.1016/j.marchem.2017.09.003.
  • [19] Kroeger, K. D., Swarzenski, P. W., Greenwood, J. Wm., Reich, C., 2007. Submarine groundwater discharge to Tampa Bay: nutrient fluxes and biogeochemistry of the coastal aquifer. Mar. Chem. 104 (1-2), 85-97, https://doi.org/10.1016/j.marchem.2006.10.012.
  • [20] Kryza, J., Kryza, H., Pruszkowska, M., Szczepiński, J., Szlufik, A., Tomaszewski, B., 2005. Dokumentacja hydrogeologiczna określająca warunki bezpośredniego odpływu podziemnego do akwenu bałtyckiego z analizą możliwości zagospodarowania i ochrony wód podziemnych. Integrated Management Services, Wrocław, 138 pp.
  • [21] Kryza, J., Kryza, H., 2006. The analytic and model estimation of the direct groundwater flow to Baltic sea on the territory of Poland. Geologos 10, 153-166.
  • [22] Li, L., Barry, D. A., Stagnitti, F., Parlange, J.-Y., 1999. Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour. Res. 35 (11), 3253-3259, https://doi.org/10.1029/1999WR900189.
  • [23] Liu, Y., Jiao, J. J., Liang, W., Kuang, X., 2017. Hydrogeochemical characteristics in coastal groundwater mixing zone. Appl. Geochem. 85 (Pt. A), 49-60, https://doi.org/10.1016/j.apgeochem.2017.09.002.
  • [24] Matciak, M., Bieleninik, S., Botur, A., Podgórski, M., Trzcińska, K., Dragańska, K., Jaśniewicz, D., Kurszewska, A., Wenta, M., 2015. Observations of presumable groundwater seepage occurrence in Puck Bay (the Baltic sea). Oceanol. Hydrobiol. St. 44 (2), 267-272, https://doi.org/10.1515/ohs-2015-0025.
  • [25] Moore, W. S., 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380, 612-614, https://doi.org/10.1038/380612a0.
  • [26] Moore, W. S., 2010. The effect of submarine groundwater discharge on the ocean. Annu. Rev. Mar. Sci. 2 (1), 59-88, https://doi.org/10.1146/annurev-marine-120308-081019.
  • [27] Nowacki, J., 1993. Morfometria zatoki. In: Korzeniewski, K. (Ed.), Zatoka Pucka. Inst. Oceanogr., UG, Gdańsk, 71-78.
  • [28] Oehler, T., Mogollón, J. M., Moosdorf, N., Winkler, A., Kopf, A., Pichler, T., 2017. Submarine groundwater discharge within a landslide scar at the French Mediterranean coast. Estuar. Coast. Shelf Sci. 198, 1280-137, http://dx.doi.org/10.1016/j.ecss.2017.09.006.
  • [29] Peltonen, K., 2002. Direct Groundwater Inflow to the Baltic Sea. TemaNord, Nordic Councils of Ministers, Copenhagen, Netherlands, 79 pp.
  • [30] Pempkowiak, J., Szymczycha, B., Kotwicki, L., 2010. Submarine groundwater discharge (SGD) to the Baltic Sea. Rocz. Ochr. Środ. 12 (1), 17-32.
  • [31] Piekarek-Jankowska, H., Łęczyński, L., 1993. Morfologia dna. In: Korzeniewski, K. (Ed.), Zatoka Pucka. Fundacja Rozwoju UG, Gdańsk, 222-281.
  • [32] Piekarek-Jankowska, H., 1994. Zatoka Pucka jako Obszar Drenażu Wód Podziemnych. Rozp. Monogr. 204, Wyd., UG, Gdańsk, 31-32.
  • [33] Piekarek-Jankowska, H., 1996. Hydrochemical effects of submarine groundwater discharge to the Puck Bay (southern Baltic Sea, Poland). Geographica Polonica 67, 103-119.
  • [34] Pietrucień, Cz., 1983. Regionalne Zróżnicowanie Warunków Dynamicznych i Hydrochemicznych Wód Podziemnych w Strefie Brzegowej Południowego i Wschodniego Bałtyku. Wyd. UMK, Toruń, 269 pp.
  • [35] Piper, A. M., 1994. A graphic procedure in the geochemical interpretation of water analysis. Am. Geophys. Union Trans. 25, 914-923.
  • [36] Regional Inspectorate for Environmental Protection (http://www.gios.gov.pl/pl/, (accessed on 21.08.2019).
  • [37] Salem, Z. E., Al Temamy, A. M., Salah, M. K., Kassab, M., 2016. Origin and characteristics of brackish groundwater in Abu Madi coastal area, Northern Nile Delta, Egypt. Estuar. Coast. Shelf Sci. 178, 21-35, https://doi.org/10.1016/j.ecss.2016.05.015.
  • [38] Santos, I. R., Burnett, W. C., Chanton, J., Mwashote, B., Suryaputra, I. G. N. A., Dittmar, T., 2008. Nutrient biogeochemistry in a Gulf of Mexico subterranean estuary and groundwater-derived fluxes to the coastal ocean. Limnol. Oceanogr. 53 (2), 705-718, https://doi.org/10.4319/lo.2008.53.2.0705.
  • [39] Schlüter, M., Sauter, E. J., Andersen, C. E., Dahlgaard, H., Dando, P. R., 2004. Spatial distribution and budget for submarine groundwater discharge in Eckernförde Bay (Western Baltic Sea). Limnol. Oceanogr. 49 (1), 157-167, https://doi.org/10.4319/lo.2004.49.1.0157.
  • [40] Szymczycha, B., Vogler, S., Pempkowiak, J., 2012. Nutrient fluxes via submarine groundwater discharge to the Bay of Puck, southern Baltic Sea. Sci. Total Environ. 438, 86-93, https://doi.org/10.1016/j.scitotenv.2012.08.058.
  • [41] Szymczycha, B., Maciejewska, A., Winogradow, A., Pempkowiak, J., 2014. Could submarine groundwater discharge be a significant carbon source to the southern Baltic Sea? Oceanologia 56 (2), 327-347, https://doi.org/10.5697/oc.56-2.327.
  • [42] Szymczycha, B., Kroeger, K. D., Pempkowiak, J., 2016. Significance of groundwater discharge along the coast of Poland as a source of dissolved metals to the southern Baltic Sea. Mar. Pollut. Bull. 109 (1), 151-162, https://doi.org/10.1016/j.marpolbul.2016.06.008.
  • [43] Urbański, J., Grusza, G., Chlebus, N., 2007. Fizyczna Typologia Dna Zatoki Gdańskiej. Pracownia Geoinformacji Zakładu Oceanografii Fizycznej. Instytut Oceanografii UG, Gdynia, 8 pp.
  • [44] Uścinowicz, S., Kramarska, R., 2011. Geological setting and bottom sediments in the Baltic Sea. The quaternary basement. In: Uścinowicz, S. (Ed.), Geochemistry of Baltic Sea Surface Sediments. Pol. Geol. Inst. - Nat. Res. Inst., 66-70.
  • [45] Viventsowa, E. A., Voronow, A. N., 2003. Groundwater discharge to the Gulf of Finland (Baltic Sea): ecological aspects. Environ. Ecol. 45, 221-225.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7a9306a-a8a1-493d-b9aa-5fc18ee068c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.