PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two state quasi-LPV dynamic model for gas exchange dynamics using the cycle-ergometer test

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a two state quasi-linear parameter varying (𝑞𝑢𝑎𝑠𝑖 − 𝐿𝑃𝑉 ) dynamic model for gas exchange dynamics using the cycle-ergometer test. The obtained model, is based on the analysis of stationary and dynamic energy flow, and the 𝑉 − 𝑠𝑙𝑜𝑝𝑒 method analysis, applies to both oxidative and glycolytic physical activities performed by an individual. The model parameters were identified by a power meter measuring the mechanical power at the pedal level on an ergometer bicycle (input signal), a commercial gas analyzer measuring the flow of oxygen uptake and the flow of carbon dioxide excreted (output signals), with data generated from two test protocols: a mixed protocol and an incremental cycling protocol. The model’s parameters are obtained in parts, from the measurements taken in the oxidative stage, the glycolytic stage, and the transition stage between the two, using the mixed protocol. The resulting model is validated using data from the incremental cycling protocol of nine individuals: six males and three females. The validated models obtained an accuracy of above 84.8% for the flow of oxygen and 89.1% for the flow of carbon dioxide. The dynamic model could be used to aid in creating personalized physical exercise programs for overweight individuals, simulating training plans within the operational thresholds of the human body or in structuring high performance training for athletes.
Twórcy
  • Industrial Control Research Group (GICI), Universidad del Valle, Cali, 760032, Colombia
autor
  • Industrial Control Research Group (GICI), Universidad del Valle, Cali, 760032, Colombia
  • Center for Health and Human Performance Research (ZOE), Av. 2 Oe. N 10-36, Cali, 760045, Colombia
autor
  • Industrial Control Research Group (GICI), Universidad del Valle, Cali, 760032, Colombia
  • Industrial Control Research Group (GICI), Universidad del Valle, Cali, 760032, Colombia
Bibliografia
  • [1] WHO. Noncommunicable-diseases @ Www.Who.Int. 2022, URL: https://www.who.int/es/news-room/fact-sheets/detail/noncommunicable-diseases.
  • [2] Goodpaster BH, Sparks LM. Metabolic flexibility in health and disease. Cell Metab 2017;25(5):1027-36. .http://dx.doi.org/10.1016/j.cmet.2017.04.015
  • [3] Smith RL, Soeters MR, Wüst RCI, Houtkooper RH. Metabolic flexibility as an adaptation to energy resources and requirements in health and disease. Endocr Rev 2018;39(4):489-517. .http://dx.doi.org/10.1210/er.2017-00211
  • [4] San-Millán I, Brooks GA. Assessment of metabolic flexibility by means of measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in professional endurance athletes and less-fit individuals. Sport Med 2018;48(2):467-79. http://dx.doi.org/10.1007/s40279-017-0751-x, URL: http: //link.springer.com/10.1007/s40279-017-0751-x.
  • [5] McArdle WD, et Victor L. Katch FIK. Exercise physiology, performance and health. 8.a ed.. Barcelona: Wolters Kluwer; 2015.
  • [6] Jetté M, Sidney K, Blümchen G. Metabolic equivalents (METS) in exercise testing, exercise prescription, and evaluation of functional capacity. Clin Cardiol 1990;13(8):555-65. http://dx.doi.org/10.1002/clc.4960130809, URL: https:// onlinelibrary.wiley.com/doi/10.1002/clc.4960130809.
  • [7] Milla P, Mónica P, Puigdevall J. Calorimetry: applications and procedures. Nutr Clí Nica Med 2008;2:155-66.
  • [8] Schutz Y. The basis of direct and indirect calorimetry and their potentials. Diabetes/Metab Rev 1995;11(4):383-408. http://dx.doi.org/10.1002/dmr.5610110406, URL: .http://doi.wiley.com/10.1002/dmr.5610110406
  • [9] Calvetti D, Kuceyeski A, Somersalo E. A mathematical model of liver metabolism: from steady state to dynamic. J Phys Conf Ser 2008;124:012012. .http://dx.doi.org/10.1088/1742-6596/124/1/012012
  • [10] Turksoy K, Quinn L, Littlejohn E, Cinar A. Multivariable adaptive identification and control for artificial pancreas systems. IEEE Trans Biomed Eng 2014;61(3):883-91. http://dx.doi.org/10.1109/TBME.2013.2291777, URL: http: //ieeexplore.ieee.org/document/6670710/.
  • [11] Viale P, Bora JJ, Benegui M, Basualdo M. Human endocrine system modeling based on ontologies. Knowl- Based Syst 2016;111:113-32. http://dx.doi.org/10. 1016/j.knosys.2016.08.002.
  • [12] Alvarez JPG, Laverde DL, Lopez SB, Gomez LM. Dynamic model of the physiological respiration process in healthy humans. In: 2019 IEEE 4th colomb. conf. autom. control. IEEE; 2019, p. 1-6. .http://dx.doi.org/10.1109/CCAC.2019.8921017
  • [13] Liu Y-J, Feng J-H, Shi X-L, Chen J-H. A least squares based parameter identification of the mesic respiratory system model. In: 2009 3rd int. conf. bioinforma. biomed. eng.. IEEE; 2009, p. 1-4. .http://dx.doi.org/10.1109/ICBBE.2009.5162180
  • [14] Riedlinger A, Kretschmer J, Moller K. Hierarchical structure of human gas exchange models to improve parameter identification. In: 2013 ICME international conference on complex medical engineering. IEEE; 2013, p. 103-8. http://dx.doi.org/10.1109/ICCME.2013.6548220, URL: http://ieeexplore.ieee. org/document/6548220/.
  • [15] Wasserman K, Beaver WL, Whipp BJ. Theory of gas exchange and lactic acidosis threshold (anaerobic threshold). PubliCE Standard; 1990.
  • [16] Leminszka MA. Modeling of lactic acid level for high performance athletes athletes. Rev Mex Ing Bioméd 2010;XXXI(1):41-56.
  • [17] Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 1986;60(6):2020-7. http://dx.doi. org/10.1152/jappl.1986.60.6.2020.
  • [18] Wasserman K, Whipp B, Koyl S, Beaver W. Anaerobic threshold and respiratory gas exchange during exercise. Ournal Appl Physiol 1973;35(2):236-43.
  • [19] Wasserman K, Hansen J, Sue D. Principles of exercise testing and interpretation. Lippincott Williams & Wilkins; 2005.
  • [20] Weir JBdV. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 1949;109(1-2):1-9. http://dx.doi.org/10.1113/jphysiol.1949.sp004363, URL: .http://doi.wiley.com/10.1113/jphysiol.1949.sp004363
  • [21] Chew YH, Shia YL, Lee CT, Majid FAA, Chua LS, Sarmidi MR, Aziz RA. Modeling of glucose regulation and insulin-signaling pathways. Mol Cell Endocrinol 2009;303(1-2):13-24. .http://dx.doi.org/10.1016/j.mce.2009.01.018
  • [22] Pearson T, Wattis JA, King JR, MacDonald IA, Mazzatti DJ. A mathematical model of the human metabolic system and metabolic flexibility. Bull Math Biol 2014;76(9):2091-121. .http://dx.doi.org/10.1007/s11538-014-0001-4
  • [23] Pearson T, Wattis JAD, King JR, MacDonald IA, Mazzatti DJ. The effects of insulin resistance on individual tissues: An application of a mathematical model of metabolism in humans. Bull Math Biol 2016;78(6):1189-217. http://dx. doi.org/10.1007/s11538-016-0181-1, URL: .http://link.springer.com/10.1007/s11538-016-0181-1
  • [24] Rosero N, Martinez JJ, Leon H. A bio-energetic model of cyclist for enhancing pedelec systems. IFAC-Pap 2017;50(1):4418-23. http://dx.doi.org/10.1016/j. Ifacol.2017.08.918.
  • [25] Rosero N, Martinez JJ, Corno M. Modeling of gas exchange dynamics using cycle-ergometer tests. IFAC- Pap 2018;51(2):349-54. .http://dx.doi.org/10.1016/j.ifacol.2018.03.060
  • [26] Rosero N, Chorin M, Martinez JJ. Parameter identification for a model of gas exchange dynamics during cycling. Int J Model Ident Control 2023;42(1):17-30. .http://dx.doi.org/10.1504/IJMIC.2023.10053834
  • [27] Do M-H. Robust observer designs for singular linear parameter-varying systems (Theses), Université Grenoble Alpes [2020-....]; 2020, URL: https://theses.hal.science/tel-03155716.
  • [28] Rotondo D, Nejjari F, Puig V. Quasi-LPV modeling, identification and control of a twin rotor MIMO system. Control Eng Pract 2013;21(6):829-46. http:// dx.doi.org/10.1016/j.conengprac.2013.02.004, URL: https://www.sciencedirect. com/science/article/pii/S0967066113000142.
  • [29] Kipp S, Byrnes WC, Kram R. Calculating metabolic energy expenditure across a wide range of exercise intensities: the equation matters. Appl Physiol Nutr Metab 2018;43(6):639-42. http://dx.doi.org/10.1139/apnm-2017-0781, URL: http:// .www.nrcresearchpress.com/doi/10.1139/apnm-2017-0781
  • [30] Ogata K. Discrete time control systems. 2.a ed.. México: Prentice Hall; 2000, p. 293-377.
  • [31] Kirk D. Optimal control theory: An introduction. Dover books on electrical engineering series, Dover Publications; 2004, URL: https://books.google.com.ec/books?id=fCh2SAtWIdwC.
  • [32] Hernandez Sampieri R, Fernandez Collado C, Baptista Lucio MdP. Definition of the scope of the research to be carried out: exploratory, descriptive, correlational or explicative. In: Research methodology. 2014, p. 76-88.
  • [33] Realpe G, Chiza JD, Ramirez JM, Rosero EE, Lopez CA. Instrumentation system for estimating the metabolic state during the use of the bicycle as a means of transportation. In: 2021 IEEE 5th Colombian conference on automatic control. CCAC, COLOMBIA: IEEE; 2021, p. 232-7. http://dx.doi.org/10. 1109/CCAC51819.2021.9633326, URL: .https://ieeexplore.ieee.org/document/9633326/
  • [34] MathWorks. Evaluating goodness of fit. 2022, URL: https://www.mathworks.com/help/curvefit/evaluating-goodness-of-fit.html.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7a3d8fd-ddfa-4336-95e3-112272824428
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.