PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Separating and transporting of particles using tightly focused radially polarized Bessel–Gaussian beam with conical phase

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The intensity distributions near the focus for radially polarized Bessel–Gaussian beam with conical phase by a high numerical aperture objective are computed based on the vector diffraction theory. Results show that the circular focal spot can be changed from one to two on the focal plane by adjusting the truncation parameter β. By increasing the phase modulation parameter L, the focal pattern appeared focal shift. According to the intensity distribution, the forces acting on a particle are calculated. The stability of particle trapping is analyzed. It is shown that a tightly focused radially polarized Bessel–Gaussian beam with conical phase is applicable to trapping, separating and transporting of particles.
Czasopismo
Rocznik
Strony
563--574
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
  • China Jiliang University, College of Optics and Electronic, Hangzhou 310018, P.R. China
autor
  • China Jiliang University, College of Optics and Electronic, Hangzhou 310018, P.R. China
autor
  • China Jiliang University, College of Optics and Electronic, Hangzhou 310018, P.R. China
Bibliografia
  • [1] ASHKIN A., DZIEDZIC J.M., BJORKHOLM J.E., Observation of a single-beam gradient force optical trap for dielectric particles, Optics Letters 11, 1986: 288-290.
  • [2] YAVUZ D.D., KULATUNGA P.B., URBAN E., Fast ground state manipulation of neutral atoms in microscopic optical traps, Physical Review Letters 96, 2006: 063001.
  • [3] ASHKIN A., Trapping of atoms by resonance radiation pressure, Physical Review Letters 40, 1978: 729-732.
  • [4] ZHANG P., LI G., ZHANG T., Subwavelength optical dipole trap for neutral atoms using a microcapillary tube tip, Journal of Physics B 50, 2017: 045005.
  • [5] CALANDER N., WILLANDER M., Optical trapping of single fluorescent molecules at the detection spots of nanoprobes, Physical Review Letters 89, 2002: 143603.
  • [6] BAUMGARTL J., MAZILU M., DHOLAKIA K., Optically mediated particle clearing using Airy wavepackets, Nature Photonics 2, 2008: 675-678.
  • [7] GU B., PAN Y., RUI G., Polarization evolution characteristics of focused hybridly polarized vector fields, Applied Physics B 117, 2014: 915-926.
  • [8] HE H., FRIESE M.E.J., HECKENBERG N.R., Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity, Physical Review Letters 75, 1995: 826-829.
  • [9] NOVITSKY A., QIU C.W., WANG H., Single gradientless light beam drags particles as tractor beams, Physical Review Letters 107, 2011: 203601.
  • [10] TSKHOVREBOVA L., TRINICK J., SLEEP J.A., Elasticity and unfolding of single molecules of the giant muscle protein titin, Nature 387, 1997: 308-312.
  • [11] WANG M.D., YIN H., LANDICK R., Block SM. Stretching DNA with optical tweezers, Biophysical Journal 72, 1997: 1335-1346.
  • [12] PANG Y., SONG H., KIM J.H., Optical trapping of individual human immunodeficiency viruses in culture fluid reveals heterogeneity with single-molecule resolution, Nature Nanotechnology 9, 2014: 624-630.
  • [13] BLOCK S.M., GOLDSTEIN L.S.B., SCHNAPP B.J., Bead movement by single kinesin molecules studied with optical tweezers, Nature 348, 1990: 348-352.
  • [14] TSKHOVREBOVA L., TRINICK J., SLEEP J.A., Elasticity and unfolding of single molecules of the giant muscle protein titin, Nature 387, 1997: 308-312.
  • [15] ZHONG M.C., WEI X.B., ZHOU J.H., Trapping red blood cells in living animalsusing optical tweezers, Nature Communications 4, 2013: 1768.
  • [16] LIU R., ZHENG L., MATTHEWS D.L., Power dependent oxygenation state transition of red blood cells in a single beam optical trap, Applied Physics Letters 99, 2011: 043702.
  • [17] LIU R., MAO Z., MATTHEWS D.L., Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: Application for sickle cell disease, Experimental Hematology 41, 2013: 656-661.
  • [18] LIU X., ZHAO D., Trapping two types of particles with a focused generalized multi-Gaussian Schell model beam, Optics Communications 354, 2015: 250-255.
  • [19] NIE Z., SHI G., LI D., Tight focusing of a radially polarized Laguerre-Bessel-Gaussian beam and its application to manipulation of two types of particles, Physics Letters A 379, 2015: 857-863.
  • [20] DUAN M., ZHANG H., LI J., Trapping two types of particles using a focused partially coherent modified Bessel-Gaussian beam, Optics and Lasers in Engineering 110, 2018: 308-314.
  • [21] SU J., NAN N., MOU J., Simultaneous trapping of two types of particles with focused elegant thirdorder Hermite-Gaussian beams, Micromachines 12, 2020: 769.
  • [22] XU Z., LIU X., CHEN Y., Self-healing properties of Hermite-Gaussian correlated Schell-model beams, Optics Express 28, 2020: 2828.
  • [23] GOUESBET G., AMBROSIO L., Rayleigh limit of generalized Lorenz-Mie theory for on-axis beams and its relationship with the dipole theory of forces. Part I: Non dark axisymmetric beams of the first kind, with the example of Gaussian beams, Journal of Quantitative Spectroscopy and Radiative Transfer 266, 2021: 107569.
  • [24] HERNE C.M., CAPUZZI K.M., SOBEL E., Rotation of large asymmetrical absorbing objects by Laguerre-Gauss beams, Optics Letters 40, 2015: 4026-4029.
  • [25] ZHANG Y., DING B., SUYAMA T., Trapping two types of particles using a double-ring-shaped radially polarized beam, Physical Review A 81, 2010: 023831.
  • [26] ZHUANG Y., ZHANG Y., DING B., Trapping Rayleigh particles using highly focused higher-order radially polarized beams, Optics Communications 284, 2011: 1734-1739.
  • [27] CHEN M., WU P., ZENG Y., Trapping dielectric Rayleigh particles with tightly focused pin-like vortex beam, European Physical Journal D 76, 2022: 20.
  • [28] WANG Q., ZHANG L., KE L., Parameters controlling of vortex solitons in nonlocal nonlinear medium with gradually characteristic length, Chaos, Solitons & Fractals 161, 2022: 112319.
  • [29] FAN C., XANG Y., CHEN Z., Trapping two types of particles by using a tightly focused radially polarized power-exponent-phase vortex beam, Journal of the Optical Society of America A 35, 2018: 903-907.
  • [30] JIANG Y., CAO Z., SHAO H., Trapping two types of particles by modified circular Airy beams, Optics Express 24, 2016: 18072-18081.
  • [31] ZHANG X., XIA T., CHENG S., Free-space information transfer using the elliptic vortex beam with fractional topological charge, Optics Communications 431, 2018: 238-244.
  • [32] SHAO W., HUANG S., LIU X., Free-space optical communication with perfect optical vortex beams multiplexing, Optics Communications 427, 2018: 545-550.
  • [33] WANG J., YANG J., FAZAL I.M., Terabit free-space data transmission employing orbital angular momentum multiplexing, Nature Photonics 6, 2012: 488-496.
  • [34] MAURER C., JESACHER A., BERNET S., What spatial light modulators can do for optical microscopy, Laser & Photonics Reviews 5, 2011, 81-101.
  • [35] PENG J., JIA S., ZHANG C., Optical force and torque on small particles induced by polarization singularities, Optics Express 30, 2022: 16489-16498.
  • [36] WU Y., WU J., LIN Z., Propagation properties and radiation forces of the Hermite-Gaussian vortex beam in a medium with a parabolic refractive index, Applied Optics 59, 2020: 8342.
  • [37] FORBES K., GREEN D., Enantioselective optical gradient forces using 3D structured vortex light, Optics Communications 515, 2022: 128197.
  • [38] WOLF E., Electromagnetic diffraction in optical systems. I. An integral representation of the image field, Proceedings of the Royal Society of London 253, 1959: 349-357.
  • [39] ZHAN Q., Trapping metallic Rayleigh particles with radial polarization, Optics Express 12, 2004: 3377-3382.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f79d7250-7b5b-43a8-b5da-f01d22f059b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.