Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Przegląd zastosowań uczenia maszynowego w inżynierii lotniczej
Języki publikacji
Abstrakty
This review paper investigates how machine learning (ML) has transformed multiple facets of aviation engineering. The work demonstrates substantial progress in flight operations and air traffic management (ATM) optimization through frameworks such as Reinforcement-Learning-Informed Prescriptive Analytics (RLIPA) and deep reinforcement learning (DRL) techniques applied to conflict resolution. The study highlights how ML contributes to operational efficiency through faster computational processes and better decision-making abilities for those who control air traffic. The paper examines how leading firms such as SpaceX and Raytheon use ML technology to enhance manufacturing processes, including predictive maintenance (PdM) and autonomous systems development. The paper discusses ML implementation obstacles, including model interpretability, and highlights further research requirements for adapting to real-world issues such as changing traffic volumes and weather variations. Overall, the study demonstrates how ML technology can transform aviation engineering through enhancements in safety standards as well as operational and process efficiency.
W niniejszym artykule przeglądowym przedstawiono w jaki sposób uczenie maszynowe (ang. machine learning - ML) przekształciło wiele aspektów inżynierii lotniczej. Artykuł przedstawia znaczny postęp w optymalizacji operacji lotniczych i zarządzania ruchem lotniczym poprzez preskryptywną analizę opartą na uczeniu się przez wzmacnianie i techniki głębokiego uczenia się ze wzmocnieniem stosowane do rozwiązywania konfliktów. Badanie podkreśla w jaki sposób ML decyduje o wydajności operacyjnej poprzez szybsze procesy obliczeniowe i lepsze zdolności podejmowania decyzji przez osoby kontrolujące ruch lotniczy. Artykuł analizuje, w jaki sposób wiodące firmy, takie jak SpaceX i Raytheon, wykorzystują technologię ML do ulepszania procesów produkcyjnych, w tym utrzymania predykcyjnego i rozwoju systemów autonomicznych. Omówiono również przeszkody we wdrażaniu ML, w tym interpretowalność modelu, oraz wskazano dalsze wymagania badawcze dotyczące dostosowywania się ML do rzeczywistych problemów, takich jak zmieniające się natężenie ruchu i wahania pogody. Ogólnie rzecz biorąc, wyniki badań omówione w artykule przedstawiają w jaki sposób technologia ML może wspomagać inżynierię lotniczą poprzez udoskonalenie norm bezpieczeństwa, a także wydajność operacyjną i procesową.
Rocznik
Tom
Strony
16--40
Opis fizyczny
Bibliogr. 100 poz., tab., wykr.
Twórcy
autor
- Department of Mechanical and Aerospace Engineering, Illinois Institute of Technology, United States of America
Bibliografia
- 1. ADAM. (2020). How Machine Learning Models Can Benefit Aerospace Manufacturing. Acubed by Airbus. Retrieved December 7, 2024, from https://acubed.airbus.com/blog/adam/how-machine-learning-models-can-benefit-aerospace-manufacturing/
- 2. Agrawal, M., Puranik, T. G., Kalyanam, K., Mulholland, K., & Tan, R. (2024). Predicting Air Traffic Management Initiatives using Machine Learning. AIAA SCITECH 2024 Forum, 0535. https://doi.org/10.2514/6.2024-0535
- 3. Ahmadi, S. H. S., Suharyo, O. S., & Susilo, A. K. (2017). Selection Anti Submarine Sensor of Helicopter Using ELECTRE III Method. International Journal of Applied Engineering Research, 12(9), 1974–1981. https://www.ripublication.com/ijaer17/ijaerv12n9_30.pdf
- 4. Al-Ghzawi, M., & El-Rayes, K. (2024). Machine learning for predicting the impact of construction activities on air traffic operations during airport expansion projects. Automation in Construction, 158, 105189. https://doi.org/10.1016/j.autcon.2023.105189
- 5. Andreeva-Mori, A., & Onji, M. (2024). Traffic-dependent Airborne Delay Buffer Optimization for Efficient Air Traffic Flow Management under Uncertainties. TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 67(3), 145–153. https://doi.org/10.2322/tjsass.67.145
- 6. ANI. (2024). GE Aerospace using AI and machine learning to enhance quality of service. The News Mill. Retrieved December 7, 2024, from https://thenewsmill.com/2024/09/ge-aerospace-using-ai-and-machine-learning-to-enhance-quality-of-service/
- 7. Arnez, F., Espinoza, H., Radermacher, A., & Terrier, F. (2021). Improving Robustness of Deep Neural Networks for Aerial Navigation by Incorporating Input Uncertainty. In Lecture notes in computer science (Vol. 12853, pp. 219–225). https://doi.org/10.1007/978-3-030-83906-2_17
- 8. Bati, F., & Withington, L. (2019). Application of Machine Learning for Aviation Safety Risk Metric. 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), 1–9. https://doi.org/10.1109/dasc43569.2019.9081657
- 9. Brown, W. L., Dabipi, I., Sharma, D., Zhang, L., Zhu-Stone, W., Mei, L., Wiggins, U. T., Cornelius, T. T., Jones, S., Wescott, R., Sharp, J. A., & Glenn, F. (2021). The Investigation of Logistic Regression Methods Applied to Engineering Education using Project Based Learning for Airport Systems Design. 2021 IEEE Frontiers in Education Conference (FIE), 1–5. https://doi.org/10.1109/fie49875.2021.9637205
- 10. Cai, Z. (2023). Overview of Research of Machine Learning in Air Traffic Management. Applied and Computational Engineering, 8, 103–112. https://doi.org/10.54254/2755-2721/8/20230091
- 11. Caricato, A., Ficarella, A., & Chiodo, L. S. (2021). Prognostic techniques for aeroengine health assessment and Remaining Useful Life estimation. E3S Web of Conferences, 312, 1–17. https://doi.org/10.1051/e3sconf/202131211017
- 12. Chen, G.-P., Chen, T.-S., & Chen, T.-C. (2024). Obstacle Avoidance for Flight Safety of Unmanned Aerial Vehicles Using Deep Reinforcement Learning. 2024 IEEE VTS Asia Pacific Wireless Communications Symposium (APWCS), 1–5. https://doi.org/10.1109/apwcs61586.2024.10679316
- 13. Choi, H.-C., Deng, C., & Hwang, I. (2021). Hybrid Machine Learning and Estimation-Based Flight Trajectory Prediction in Terminal Airspace. IEEE Access, 9, 151186–151197. https://doi.org/10.1109/access.2021.3126117
- 14. Chu, T., & Yin, C. (2024). Fault diagnosis for the aircraft system. International Conference on Mechatronic Engineering and Artificial Intelligence (MEAI 2023), 13071, 130710D. https://doi.org/10.1117/12.3025524
- 15. Cofer, D., Sattigeri, R., Amundson, I., Babar, J., Hasan, S., Smith, E. W., Nukala, K., Osipychev, D., Moser, M. A., Paunicka, J. L., Margineantu, D. D., Timmerman, L., & Stringfield, J. Q. (2022). Flight Test of a Collision Avoidance Neural Network with Run-Time Assurance. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), 1–10. https://doi.org/10.1109/dasc55683.2022.9925743
- 16. Dalmau, R., Ballerini, F., Naessens, H., Belkoura, S., & Wangnick, S. (2021). An explainable machine learning approach to improve take-off time predictions. Journal of Air Transport Management, 95, Article 102090. https://doi.org/10.1016/j.jairtraman.2021.102090
- 17. Dangut, M. D., Skaf, Z., & Jennions, I. (2020). Aircraft Predictive Maintenance Modeling using a Hybrid Imbalance Learning Approach. TESConf 2020 - 9th International Conference on Through-life Engineering Services, 1–6. https://doi.org/10.2139/ssrn.3718065
- 18. Dangut, M. D., Skaf, Z., & Jennions, I. K. (2021). An integrated machine learning model for aircraft components rare failure prognostics with log-based dataset. ISA Transactions, 113, 127–139. https://doi.org/10.1016/j.isatra.2020.05.001
- 19. De Giovanni, L., Lancia, C., & Lulli, G. (2024). Data-Driven Optimization for Air Traffic Flow Management with Trajectory Preferences. Transportation Science, 58(2), 540–556. https://doi.org/10.1287/trsc.2022.0309
- 20. Dhief, I., Alam, S., Lilith, N., & Mean, C. C. (2022). A machine learned go-around prediction model using pilot-in-the-loop simulations. Transportation Research Part C: Emerging Technologies, 140, Article 103704. https://doi.org/10.1016/j.trc.2022.103704
- 21. Do-Han, K. (2024). Why is Blue Origin investing on AI Talent. AIM Research. Retrieved December 7, 2024, from https://aimresearch.co/generative-ai/why-is-blue-origin-investing-on-ai-talent
- 22. Dube, A. (2024). Application of Deep Learning in Predictive Maintenance of Aircraft Engines. Darpan International Research Analysis, 12(3), 83–100. https://doi.org/10.36676/dira.v12.i3.58
- 23. Fremont, D. J., Chiu, J., Margineantu, D. D., Osipychev, D., & Seshia, S. A. (2020). Formal Analysis and Redesign of a Neural Network-Based Aircraft Taxiing System with VerifAI. In Lecture notes in computer science (Vol. 12224, pp. 122–134). https://doi.org/10.1007/978-3-030-53288-8_6
- 24. Gallego, C. E. V., Comendador, V. F. G., Carmona, M. a. A., Valdés, R. M. A., Nieto, F. J. S., & Martínez, M. G. (2019). A machine learning approach to air traffic interdependency modelling and its application to trajectory prediction. Transportation Research Part C: Emerging Technologies, 107, 356–386. https://doi.org/10.1016/j.trc.2019.08.015
- 25. Garcia, A. B., Babiceanu, R. F., & Seker, R. (2021). Artificial Intelligence and Machine Learning Approaches For Aviation Cybersecurity: An Overview. 2021 Integrated Communications Navigation and Surveillance Conference (ICNS), 1–8. https://doi.org/10.1109/icns52807.2021.9441594
- 26. Gavra, V., & Van Kampen, E.-J. (2024). Evolutionary Reinforcement Learning: A Hybrid Approach for Safety-informed Intelligent Fault-tolerant Flight Control. AIAA SCITECH 2024 Forum, 0954. https://doi.org/10.2514/6.2024-0954
- 27. Gui, G., Zhou, Z., Wang, J., Liu, F., & Sun, J. (2020). Machine Learning Aided Air Traffic Flow Analysis Based on Aviation Big Data. IEEE Transactions on Vehicular Technology, 69(5), 4817–4826. https://doi.org/10.1109/tvt.2020.2981959
- 28. Gutierrez, P. (2024). Machine Learning Powers EGNOS Performance Prediction. Inside GNSS - Global Navigation Satellite Systems Engineering, Policy, and Design. Retrieved December 7, 2024, from https://insidegnss.com/machine-learning-powers-egnos-performance-prediction/
- 29. Hasan, G. M., Hasan, M., Liu, P., Rad, M., Bernier, E., & Hall, T. J. (2022). Optical Wavelength Meter with Machine Learning Enhanced Precision. arXiv (Cornell University), 1–18. https://doi.org/10.48550/arxiv.2203.07420
- 30. Haughn, K. P. T., Harvey, C., & Inman, D. J. (2023). Deep learning reduces sensor requirements for gust rejection on a small uncrewed aerial vehicle morphing wing. arXiv (Cornell University), 1–16. https://doi.org/10.48550/arxiv.2304.03133
- 31. Helgo, M. (2023). Deep Learning and Machine Learning Algorithms for Enhanced Aircraft Maintenance and Flight Data Analysis. Journal of Robotics Spectrum, 1, 90–99. https://doi.org/10.53759/9852/jrs202301009
- 32. Hermawan, A. P., Kim, D.-S., & Lee, J.-M. (2020). Predictive Maintenance of Aircraft Engine using Deep Learning Technique. 2020 International Conference on Information and Communication Technology Convergence (ICTC), 1296–1298. https://doi.org/10.1109/ictc49870.2020.9289466
- 33. Hu, X., Pan, X., & Wang, J. (2024). Horizontal Tail Flight Load Prediction Method for Large UAVs based on Machine Learning. Journal of Physics: Conference Series, 2762, 1–7. https://doi.org/10.1088/1742-6596/2762/1/012082
- 34. Ingole, O., Pande, A., Dongre, A., Jadhav, D., Dhamecha, D., Daspute, H., Komble, S., & Bhosale, T. (2022). Investigation of Different Regression Models For The Predictive Maintenance of Aircraft’s Engine. 2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT), 1–6. https://doi.org/10.1109/icerect56837.2022.10059651
- 35. Jacko, J. A. (2009). Human-Computer Interaction. Interacting in Various Application Domains. In Lecture Notes in Computer Science. Springer. https://doi.org/10.1007/978-3-642-02583-9
- 36. Jagannath, J., Jagannath, A., Furman, S., & Gwin, T. (2021). Deep Learning and Reinforcement Learning for Autonomous Unmanned Aerial Systems: Roadmap for Theory to Deployment. In Studies in computational intelligence (Vol. 984, pp. 25–82). https://doi.org/10.1007/978-3-030-77939-9_2
- 37. Jia, L., Ezhilarasu, C. M., & Jennions, I. K. (2023). Cross-Condition Fault Diagnosis of an Aircraft Environmental Control System (ECS) by Transfer Learning. Applied Sciences, 13(24), Article 13120. https://doi.org/10.3390/app132413120
- 38. Jia, Z., Li, Y., Wang, S., & Liu, Z. (2022). A multi-channel data-based fault diagnosis method integrating deep learning strategy for aircraft sensor system. Measurement Science and Technology, 34, Article 025115. https://doi.org/10.1088/1361-6501/aca219
- 39. Jin, W., Liu, H., & Shen, F. (2024). Artificial Intelligence in Flight Safety: Fatigue Monitoring and Risk Mitigation Technologies. Preprints, 1–11. https://doi.org/10.20944/preprints202409.2208.v1
- 40. Kabashkin, I., Misnevs, B., & Zervina, O. (2023). Artificial Intelligence in Aviation: New Professionals for New Technologies. Applied Sciences, 13(21), Article 11660. https://doi.org/10.3390/app132111660
- 41. Karaoğlu, U., Mbah, O., & Zeeshan, Q. (2023). Applications of Machine Learning in Aircraft Maintenance. Journal of Engineering Management and Systems Engineering, 2(1), 76–95. https://doi.org/10.56578/jemse020105
- 42. Katta, S. S., & Viegas, E. K. (2023). Towards a Reliable and Lightweight Onboard Fault Detection in Autonomous Unmanned Aerial Vehicles. 2023 IEEE International Conference on Robotics and Automation (ICRA), 1284–1290. https://doi.org/10.1109/icra48891.2023.10161183
- 43. Khelifi, A., Johnson, C. C., Thompson, L., Bouaynaya, N. C., Carannante, G., & Trabelsi, M. A. (2024). Advancing Cockpit Safety: Cost-Effective Flight Data Monitoring with Deep Learning. 80th Annual Vertical Flight Society Forum and Technology Display, FORUM 2024, 1–16. https://doi.org/10.4050/f-0080-2024-1239
- 44. Lee, H., Lim, H. J., & Chattopadhyay, A. (2021). Data-driven system health monitoring technique using autoencoder for the safety management of commercial aircraft. Neural Computing and Applications, 33, 3235–3250. https://doi.org/10.1007/s00521-020-05186-x
- 45. Li, L. (2021). Research on Comparison of Different Algorithms in Diagnosing Faults of Aircraft Engines. Journal of Aerospace Technology and Management, 13, 1–10. https://doi.org/10.1590/jatm.v13.1229
- 46. Liu, H., Xie, R., Qin, H., & Li, Y. (2024). Research on dangerous flight weather prediction based on machine learning. Journal of Physics: Conference Series, 2870, Article 012020. https://doi.org/10.1088/1742-6596/2870/1/012020
- 47. Liu, H., Zhao, Y., Zaporowska, A., & Skaf, Z. (2023). A machine learning-based clustering approach to diagnose multi-component degradation of aircraft fuel systems. Neural Computing and Applications, 35, 2973–2989. https://doi.org/10.1007/s00521-021-06531-4
- 48. Liu, Y., Li, W., & Niu, W. (2022). Research on application of data driven PHM technology in aviation electromechanical system. International Conference on Mechanisms and Robotics (ICMAR 2022), 12331, 243–248. https://doi.org/10.1117/12.2652529
- 49. Lockheed Martin. (2024a). Lockheed Martin Leverages AI and Machine Learning to Revolutionize Defense and Space Technology. Retrieved December 7, 2024, from https://www.lockheedmartin.com/en-us/news/features/2024/lockheed-martin-leverages-ai-and-machine-learning-to-revolutionize-defense-and-space-technology.html
- 50. Lockheed Martin. (2024b). Lockheed Martin Awarded Contract to Develop Artificial Intelligence Tools for DARPA. Retrieved December 7, 2024, from https://news.lockheedmartin.com/2024-07-08-lockheed-martin-awarded-contract-to-develop-artificial-intelligence-tools-for-darpa
- 51. Lüdtke, A., & Möbus, C. (2005). A Case Study for Using a Cognitive Model of Learned Carelessness in Cognitive Engineering. Proceedings of the 11th International Conference of Human-Computer Interaction (HCI International´05), 1–5. https://oops.uni-oldenburg.de/1946/
- 52. Luettig, B., Akhiat, Y., & Daw, Z. (2024). ML meets aerospace: challenges of certifying airborne AI. Frontiers in Aerospace Engineering, 3, 1–26. https://doi.org/10.3389/fpace.2024.1475139
- 53. Luo, R., & Chen, X. (2023). Study on Deep Learning of Aircraft Safety Enhancement and Autonomous Flight Assistance. International Journal of Frontiers in Engineering Technology, 5(12), 88–96. https://doi.org/10.25236/ijfet.2023.051214
- 54. Lv, S., Sun, W., & Wang, H. (2024). Aircraft Fault Diagnosis and Prediction Algorithm Based on Deep Learning and Markov Model. 2024 3rd International Conference on Artificial Intelligence and Autonomous Robot Systems (AIARS), 427–432. https://doi.org/10.1109/aiars63200.2024.00085
- 55. Madhavan, R. (2019). Artificial Intelligence Applications at Northrop Grumman – An Overview. Emerj Artificial Intelligence Research. Retrieved December 7, 2024, from https://emerj.com/artificial-intelligence-applications-at-northrop-grumman-an-overview/
- 56. Malik, I. (2024). How AI is Revolutionizing SpaceX’s Operations: Advancing Space Exploration. Mount Bonnell. Retrieved December 7, 2024, from https://www.mountbonnell.info/boca-chica-blastoff/the-role-of-ai-in-spacexs-operations
- 57. Melin, J. (n.d.). Moving Beyond the Hype of Predictive Maintenance. Honeywell Aerospace Technologies. Retrieved December 7, 2024, from https://aerospace.honeywell.com/us/en/about-us/blogs/moving-beyond-the-hype-of-predictive-maintenance
- 58. Mohammed, S., Chang, R.-S., Ramos, C., & Kim, T.-H. (2022). From the Editors of the Special Issue on Current Applications and Innovations of Artificial Intelligence and Machine Learning in Aerospace. IEEE Aerospace and Electronic Systems Magazine, 37(6), 4–5. https://doi.org/10.1109/maes.2022.3170740
- 59. Morales, C., Sanz, J., & Moral, S. (2017). Design of a software environment to support machine learning analysis of aircraft trajectories ( EIWAC 2017 ). In EIWAC 2017 5th ENRI International Workshop on ATM/CNS. https://www.semanticscholar.org/paper/Design-of-a-software-environment-to-support-machine-Morales-Sanz/eff024e05eb81cb3fb6a24c62385aacebf8eef42
- 60. Murthy, A., Buddhi, D., Averineni, A., Narayana, M. S., Sowjanya, G. D., & Sowmya, C. (2023). Machine Learning as A Predictive Technology and its Impact on Digital Markets. 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 672–676. https://doi.org/10.1109/icacite57410.2023.10182639
- 61. Noon, C. (2024). Squad Goals: GE Aerospace Brings Safety-First Mindset to AI Consortium. GE Aerospace. Retrieved December 7, 2024, from https://www.geaerospace.com/news/articles/squad-goals-ge-aerospace-brings-safety-first-mindset-ai-consortium
- 62. Northrop Grumman. (2023). Deep Learning Technologies Will Change How We Process Data. Retrieved December 7, 2024, from https://www.northropgrumman.com/life-at-northrop-grumman/deep-learning-technologies-will-change-how-we-process-data
- 63. Pahuja, R. (2024). Artificial Intelligence at Boeing – Two Use Cases. Emerj Artificial Intelligence Research. Retrieved December 7, 2024, from https://emerj.com/artificial-intelligence-at-boeing/
- 64. Park, C., Kim, G. S., Park, S., Jung, S., & Kim, J. (2023). Multi-Agent Reinforcement Learning for Cooperative Air Transportation Services in City-Wide Autonomous Urban Air Mobility. arXiv (Cornell University), 1–15. https://doi.org/10.48550/arxiv.2306.04137
- 65. Pearce, J. (2024). “Perfect marriage” between AI & humans: Rolls-Royce’s safety framework. TechInformed. Retrieved December 7, 2024, from https://techinformed.com/perfect-marriage-between-ai-humans-rolls-royce-ai-safety-framework/
- 66. Phadnis, A. (2023). Pratt & Whitney, Awiros launch AI-based aircraft engine analysis tool. Business Standard. Retrieved December 7, 2024, from https://www.business-standard.com/companies/news/pratt-whitney-awiros-launch-ai-based-aircraft-engine-analysis-tool-123062000600_1.html
- 67. Pratt & Whitney Customer Service. (2022). How Artificial Intelligence is Enhancing P&WC Engine Maintenance. Pratt & Whitney. Retrieved December 7, 2024, from https://www.prattwhitney.com/en/blogs/airtime/2022/03/10/how-ai-enhances-oil-analysis-technology
- 68. Pratt & Whitney. (2022). Artificial Intelligence Boosts Pratt & Whitney Canada’s Oil Analysis Technology to Deliver Proactive and Preventative Maintenance for Its Helicopter Customers. Retrieved December 7, 2024, from https://www.prattwhitney.com/en/newsroom/news/2022/03/08/artificial-intelligence-boosts-pwc-oil-analysis-technology-to-deliver-proactive-and-preventative
- 69. Pratt & Whitney. (2023). Pratt & Whitney and Indian Start-up Awiros launch AI-based Aircraft Engine Inspection Tool, Percept. Retrieved December 7, 2024, from https://www.prattwhitney.com/en/newsroom/news/2023/06/20/pratt-whitney-and-indian-start-up-awiros-launch-ai-based-aircraft-engine-inspec
- 70. Puranik, T. G., Rodriguez, N., & Mavris, D. N. (2020). Towards online prediction of safety-critical landing metrics in aviation using supervised machine learning. Transportation Research Part C: Emerging Technologies, 120, 102819. https://doi.org/10.1016/j.trc.2020.102819
- 71. Rahamathunnisa, U., Mohanty, A., Sudhakar, K., Jebamani, S. A., Udendhran, R., & Myilsamy, S. (2023). Machine Learning and Deep Learning for Intelligent Systems in Small Aircraft Applications. In Handbook of Research on AI and ML for Intelligent Machines and Systems (pp. 251–275). https://doi.org/10.4018/978-1-6684-9999-3.ch011
- 72. Rainey, K. (2024). Honeywell Introduces AI-Enabled Software Solution To Improve Commercial Aerospace Operations. Honeywell Aerospace Technologies. Retrieved December 7, 2024, from https://aerospace.honeywell.com/us/en/about-us/press-release/2024/04/honeywell-introduces-ai-enabled-software-solution-to-improve-commercial-aerospace-operations
- 73. Reim, G., & Norris, G. (2023). Virgin Galactic Sees Sweet Spot For Microgravity Research Flights. Aviation Week Network. Retrieved December 7, 2024, from https://aviationweek.com/space/commercial-space/virgin-galactic-sees-sweet-spot-microgravity-research-flights
- 74. RTX. (n.d.). Transformative Technologies. Retrieved December 7, 2024, from https://www.rtx.com/who-we-are/we-are-rtx/transformative-technologies
- 75. Saitata. (2023). How SpaceX Accelerates Space Exploration Using Artificial Intelligence. Medium. Retrieved December 7, 2024, from https://medium.com/teamcalai/how-spacex-accelerates-space-exploration-using-artificial-intelligence-a4f82692fbdc
- 76. Salvador, M. A. (2022). Challenges of Machine Learning for eVTOL Reliability and Safety. Journal of Mobile Multimedia, 19(01), 311–324. https://doi.org/10.13052/jmm1550-4646.19116
- 77. Sano, H. H., & Berton, L. (2022). Application of Deep Learning Models for Aircraft Maintenance. Anais Do XIX Encontro Nacional De Inteligência Artificial E Computacional, 787–797. https://doi.org/10.5753/eniac.2022.227575
- 78. Saxena, V., & Ak, S. (2023). Testing of Aircraft Failure using Machine Learning Algorithms. 2023 6th International Conference on Contemporary Computing and Informatics (IC3I), 1900–1904. https://doi.org/10.1109/ic3i59117.2023.10398058
- 79. Shen, Y., Ma, L., & Khorasani, K. (2024). Hybrid Machine Learning-Based Methodologies for Fault Diagnosis, Prognosis and Health Management. 2024 36th Chinese Control and Decision Conference (CCDC), 4318–4325. https://doi.org/10.1109/ccdc62350.2024.10587398
- 80. Shuaia, H., Wang, J., Wang, A., Zhang, R., & Yang, X. (2023). Advances in assuring artificial intelligence and machine learning development lifecycle and their applications in aviation. 2023 5th International Academic Exchange Conference on Science and Technology Innovation (IAECST), 861–867. https://doi.org/10.1109/iaecst60924.2023.10503086
- 81. Smith, H. (2023). NASA Machine Learning Air Traffic Software Saves Fuel. NASA. Retrieved December 7, 2024, from https://www.nasa.gov/centers-and-facilities/ames/nasa-machine-learning-air-traffic-software-saves-fuel/
- 82. Sridhar, B., Chatterji, G. B., & Evans, A. D. (2020). Lessons Learned in the Application of Machine Learning Techniques to Air Traffic Management. AIAA AVIATION 2020 FORUM, 2882. https://doi.org/10.2514/6.2020-2882
- 83. Stanton, I., Munir, K., Ikram, A., & El‐Bakry, M. (2024). Data augmentation for predictive maintenance: Synthesising aircraft landing gear datasets. Engineering Reports, 1–19. https://doi.org/10.1002/eng2.12946
- 84. STP. (2021). Navy STP Technology Guide. 2021-22 Navy STP Cohort, 1–48. https://navyfst.com/wp-content/uploads/2021/10/FY-21-22-NAVY-STP-Cohort-Technology-Guide.pdf
- 85. Sui, D., Ma, C., & Dong, J. (2023a). Conflict resolution strategy based on deep reinforcement learning for air traffic management. Aviation, 27(3), 177–186. https://doi.org/10.3846/aviation.2023.19720
- 86. Sui, D., Ma, C., & Wei, C. (2023b). Tactical Conflict Solver Assisting Air Traffic Controllers Using Deep Reinforcement Learning. Aerospace, 10(2), Article 182. https://doi.org/10.3390/aerospace10020182
- 87. Taylor, C., Vargo, E., Manderfield, T., & Heitin, S. (2024). Teaching Artificial Intelligence Good Air Traffic Flow Management. Journal of Air Transportation, 32(4), 184–196. https://doi.org/10.2514/1.d0414
- 88. Timjerdine, M., Taibi, S., & Moubachir, Y. (2024). Leveraging AI and Industry 4.0 in Aircraft Maintenance: Addressing Challenges and Improving Efficiency. 2024 International Conference on Global Aeronautical Engineering and Satellite Technology (GAST), 1–6. https://doi.org/10.1109/gast60528.2024.10520779
- 89. Vaidyanathan, K., Danet, T., Tran, T. V., & Luu, Y. (2024). Improving flight planning efficiency through machine learning. Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications VI, 13051, Article 1305115. https://doi.org/10.1117/12.3015947
- 90. Wade, D. R., Wilson, A. W., & Aeromechanics Division, Aviation Engineering Directorate. (2017). Applying Machine Learning-Based Diagnostic Functions to Rotorcraft Safety. 17th Australian International Aerospace Congress: AIAC, 663–669. https://humsconference.com.au/Papers2017/Non_Peer_Reviewed/071_HUMS2017_Wade_HUMS_Best_Presentation.pdf
- 91. Wang, L., Yang, H., Lin, Y., Yin, S., & Wu, Y. (2022). Explainable and Safe Reinforcement Learning for Autonomous Air Mobility. arXiv (Cornell University), 1–13. https://doi.org/10.48550/arxiv.2211.13474
- 92. Wang, Y., Cai, W., Tu, Y., & Mao, J. (2023). Reinforcement-Learning-Informed Prescriptive Analytics for Air Traffic Flow Management. IEEE Transactions on Automation Science and Engineering, 21(3), 4188–4202. https://doi.org/10.1109/tase.2023.3292921
- 93. Wild, G., Baxter, G., Srisaeng, P., & Richardson, S. (2022). Machine Learning for Air Transport Planning and Management. AIAA AVIATION 2022 Forum, 3706. https://doi.org/10.2514/6.2022-3706
- 94. Xie, Y., Gardi, A., Sabatini, R., & Liang, M. (2022). Hybrid AI-based Dynamic Re-routing Method for Dense Low-Altitude Air Traffic Operations. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), 1–9. https://doi.org/10.1109/dasc55683.2022.9925777
- 95. Xie, Y., Pongsakornsathien, N., Gardi, A., & Sabatini, R. (2021). Explanation of Machine-Learning Solutions in Air-Traffic Management. Aerospace, 8(8), Article 224. https://doi.org/10.3390/aerospace8080224
- 96. Yang, T., Li, G., Yuan, S., Qi, Y., Yu, X., & Han, Q. (2023). The LST-SATM-net: A new deep feature learning framework for aero-engine hydraulic pipeline systems intelligent faults diagnosis. Applied Acoustics, 210, 109436. https://doi.org/10.1016/j.apacoust.2023.109436
- 97. Yue, L., Yang, R., Zhang, Y., & Zuo, J. (2023). Research on reinforcement learning-based safe decision-making methodology for multiple unmanned aerial vehicles. Frontiers in Neurorobotics, 16, Article 1105480. https://doi.org/10.3389/fnbot.2022.1105480
- 98. Zang, H., Zhu, J., & Gao, Q. (2022). Deep Learning Architecture for Flight Flow Spatiotemporal Prediction in Airport Network. Electronics, 11(23), Article 4058. https://doi.org/10.3390/electronics11234058
- 99. Zhang, H., & Du, W. (2024). Research on fault diagnosis methods for certain civil aircraft based on human-machine interaction data enhancement. 2024 36th Chinese Control and Decision Conference (CCDC), 3253–3258. https://doi.org/10.1109/ccdc62350.2024.10588039
- 100. Zhou, J., Liu, Y., & Zhang, T. (2019). Fault diagnosis based on relevance vector machine for fuel regulator of aircraft engine. International Journal of Machine Learning and Cybernetics, 10, 1779–1790. https://doi.org/10.1007/s13042-018-0855-0
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2026).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f79d0d20-4b63-4cb2-9416-cd6221f1de0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.