PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Response Surface Methodology for Treatment of Paper Mill Wastewater by Using Inorganic Polymeric Coagulant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inorganic polymeric ferric chloride (POFC) coagulant with proposed structure of Fen (Cl2.2OH0.8)n is synthesized using waste materials and characterized by XRD. In the current work scrutinized efficiency of POFC for paper mill wastewater (PMW) treatment using response surface methodology (RSM) with central Composite Design (CCD) modeling. Different factors; dose, rapid mixing speed, and rapid mixing time are used for optimize the coagulation process using POFC for treating PMW. The turbidity and chemical oxygen demand (COD) removals are the indicators for assessing POFC efficiency. The obtained result for XRD confirms the production of new material of inorganic polymeric coagulants. Based on RSM modelling, there is a high correlation between the experimental and predicated removals of turbidity and COD. Subsequently, the model is significantly applied for predicating COD and turbidity removals at different operation condition. Conclusively, the obtained results proposed for practical application of POFC coagulant for treatment of paper mill wastewater for COD and turbidity elimination. Furthermore, the applied RSM with CCD is talented model for optimizing treatment of PMW.
Twórcy
  • Water Pollution Research Department, Environmental and Climate Changes Research Institute, National Research Centre, El-Buhouth St., Dokki, Cairo P.O. 12622, Egypt
  • Water Pollution Research Department, Environmental and Climate Changes Research Institute, National Research Centre, El-Buhouth St., Dokki, Cairo P.O. 12622, Egypt
  • Theoretical Physics Department, National Research Center, El-Buhouth St., Dokki, Cairo P.O. 12622, Egypt
  • Water Pollution Research Department, Environmental and Climate Changes Research Institute, National Research Centre, El-Buhouth St., Dokki, Cairo P.O. 12622, Egypt
  • Water Pollution Research Department, Environmental and Climate Changes Research Institute, National Research Centre, El-Buhouth St., Dokki, Cairo P.O. 12622, Egypt
Bibliografia
  • 1. Adhikari G., Bhattacharyya K.G. 2015. Impact of pulp and paper mill effl uents and solid wastes on soil mineralogical and physicochemical properties. Environmental Monitoring and Assessment, 187, 1–13.
  • 2. Ahmad A.L., Ismail S., Bhatia S. 2005. Optimization of Coagulation−Flocculation Process for Palm Oil Mill Effl uent Using Response Surface Methodology. Environmental Science & Technology, 39 (8), 2828-2834.
  • 3. Alaeddini A., Yang K., Murat A. 2013. ASRSM: A Sequential Experimental Design for Response Surface Optimization. Quality and Reliability Engineering International, 29, 241–258.
  • 4. Ali M.E.M., Abdelsalam H., Ammar N.S. Ibrahim, H.S. 2018. Response surface methodology for optimization of the adsorption capability of ball-milled pomegranate peel for diff erent pollutants. Journal of Molecular Liquids, 250, 433–445.
  • 5. Ayodele O.B., Lim J.K., Hameed B.H. 2012. Degradation of phenol in photo-Fenton process by phosphoric acid modified kaolin supported ferricoxalate catalyst: optimization and kinetic modeling. Chemical Engineering Journal, 197, 181–192.
  • 6. Bashir M.J.K., Abu Amr S.S., Aziz S.Q., Aun N.C., Sethupathi S. 2015. Wastewater Treatment Processes Optimization Using Response Surface Methodology (RSM) Compared with Conventional Methods: Review and Comparative Study Middle-East. Journal of Scientific Research, 23(2), 244-252.
  • 7. Box G.E.P., Hunter J.S. 1957. Multi-factor experimental design for exploring response surfaces. Annals of Mathematical Statistics, 28, 195–24.
  • 8. Cao L., Yang L., Liu H., Yuxi C., Xiaohong X., Haibo Z. 2013. Investigation of graphite/carbon spiral nanoribbons using FeCl3–CuCl2–graphite intercalation compounds as precursors. Materials Letters, 108, 196–199.
  • 9. Chandra R., Sharma P., Yadav S., Tripathi S., 2018. Biodegradation of endocrine-disrupting chemicals and residual organic pollutants of pulp and paper mill effluent by biostimulation. Frontiers in Microbiology, 9, 1–15. https://doi.org/10.3389/fmicb.2018.00960.
  • 10. Emiliano M.S., Juan C.L.D., Francisco J.C.G., Valentín M.M. 2018. Proposal of Sustainability Indicators for the Waste Management from the Paper Industry within the Circular Economy Model. Water, 10, 10-14.
  • 11. Flaten T.P. 2001. Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water. Brain Research Bulletin, 55(2), 187-196.
  • 12. Hubbe M.A.M.A., Metts J.R., Hermosilla D., Blanco M.A.A., Yerushalmi L., Haghighat F., Lindholm-Lehto P., Khodaparast Z., Kamali M., Elliott A. 2016. Wastewater treatment and reclamation: a review of pulp and paper industry practices and opportunities. Bioresources, 11, 7953–8091.
  • 13.Jaria G., Silva C.P., Ferreira C.I.A., Otero M., Calisto V. 2017. Sludge from paper mill effluent treatment as raw material to produce carbon adsorbents: An alternative waste management strategy. Journal of Environmental Management, 188, 203–211.
  • 14.Joo D.J., Shin W.S., Choi J.H., Choi S.J., Kim M.C., Han M.H., Ha T.W., Kim Y.H. 2007. Decolorization of reactive dyes using inorganic coagulants and synthetic polymer. Dyes and Pigments, 73(1), 59–64.
  • 15. Kamali M., Khodaparast Z. 2015. Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicology and Environmental Safety, 114, 326–342.
  • 16. Kan C., Huang C., Pan J.R. 2002. Coagulation of high turbidity water: the effects of rapid mixing. Journal of Water Supply: Research and Technology, 51, 77-85.
  • 17. Kim H.K., Kim J.G., Cho J.D., Hong J.W. 2003. Optimization and characterization of UV-curable adhesives for optical communication by response surface methodology. Polymer Testing, 22, 899–906.
  • 18. Kim S.C. 2016. Application of response Surface method as an experimental design to optimize coagulation–flocculation process for pre-treating paper wastewater. Journal of Industrial and Engineering Chemistry, 38, 93–102.
  • 19. Kumar V., Singh J., Chopra A.K. 2018. Assessment of phyto-kinetic removal of pollutants of paper mill effluent using water hyacinth (Eichhornia crassipes (Mart.)Solms). Environmental Technology, 39(21), 2781–2791. https://doi.org/10.1080/09593330.2017.1365944.
  • 20. Lombi E., Stevens D.P., McLaughlin M.J. 2010. Effect of water treatment residuals on soil phosphorus, copper and aluminum availability and toxicity. Environmental Pollution, 158, 2110–2116.
  • 21. Louvain N., Ahmed F., Pierre B., El-Ghozzi M., Katia G., Sougrati M.T., Claude J.J., Patrick W., 2013. One-shot versus stepwise gas–solid synthesis of iron trifluoride: investigation of pure molecular F2 fluorination of chloride precursors. CrystEngComm Journal, 15, 3664–3671.
  • 22. Ma H., Quantong Y., Yinghuan F., Chun M., Xiaoli D. 2010. Synthesis of Zeolite of Type A from Bentonite by Alkali Fusion Activation using Na2 CO3. Industrial & Engineering Chemistry Research, 49(2), 454-458.
  • 23. Momeni M.M., Kahforoushan D., Abbasi F., Ghanbarian S., 2018. Using Chitosan/CHPATC as coagulant to remove color and turbidity of industrial wastewater: Optimization through RSM design. Journal of Environmental Management, 211, 347-355.
  • 24. Napier-Munn T.J. 2000. The central composite rotatable design, JKMRC. The University of Queensland Brisbane, Australia, 1–9.
  • 25. Nasser M.S., James A.E. 2006. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions. Separation and Purification Technology, 52(2), 241-252.
  • 26. Pellegrin V., Juretschko S., Wagner M., Cottenceau G. 1999. Morphological and biochemical properties of a Sphaerotilus sp. isolated from paper mill slimes. Applied and Environmental Microbiology, 65, 156–162.
  • 27. Pokhrel D., Viraraghavan T. 2004. Treatment of pulp and paper mill wastewater-A review. Science of the Total Environment, 333, 37–58.
  • 28. Rice E.W., Baird R.B., Eaton A.D. 2017. Standard Methods for the Examination of Water and Wastewater, 23rd Edition, American Public Health Association, American Water Works Association, Water Environment Federation.
  • 29. Sharma B.R., Dhuldhoya N.C. 2006. Merchant U.C., Flocculants—an Ecofriendly Approach. Journal of Polymers and the Environment, 14(2), 195-202.
  • 30. Shaykhi Z.M., Zinatizadeh A.A.L. 2014. Statistical modeling of photocatalytic degradation of synthetic amoxicillin wastewater (SAW) in an immobilized TiO2 photocatalytic reactor using response Surface methodology (RSM). Journal of the Taiwan Institute of Chemical Engineers, 45, 1717–1726.
  • 31. Sheng W., Peng X.F., Lee D.J., Su A. 2006. Coagulation of particles through rapid mixing. Drying Technology, 24, 1271-1276.
  • 32. Soucy J., Koubaa A., Migneault S., Riedl B. 2014. The potential of paper mill sludge for wood–plastic composites. Industrial Crops and Products, 54, 248–256.
  • 33. Suárez-Escobar A., Pataquiva-Mateus A., LópezVasquez A. 2016. Electro-coagulation-photocatalytic process for the treatment of lithographic wastewater. Optimization using response Surface methodology (RSM) and kinetic study. Catalysis Today, 266, 120–125.
  • 34. Szolosi O. 2003. Water cycle with zero discharge at Visy Pulp and Paper, Tumut, NSW: Water (Australia), 30, 34–36.
  • 35. Tatsi A.A., Zouboulis A.I., Matis K.A., Samaras P. 2003. Coagulation–flocculation pretreatment of sanitary landfill leachates. Chemosphere, 53(7), 737-744.
  • 36. Thompson G., Swain J., Kay M., Froster C.F. 2001. The treatment of pulp and paper mill effluent: A review. Bioresource Technology, 77, 275–286.
  • 37. Wang J.P., Chen Y.Z., Ge X.W., Yu H.Q. 2007. Optimization of coagulation-flocculation process for a paper recycling wastewater treatment using response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering, 302, 204–210.
  • 38. Wong S.S., Teng T.T., Ahmad A.L., Zuhairi A., Najafpour G. 2006. Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polimer induced flocculation. Journal of Hazardous Materials, 135(1–3), 378-388.
  • 39. Yue Q.Y., Gao B.Y., Wang Y., Zhang H., Sun X., Wang S.G., Gu R.R. 2008. Synthesis of polyamine flocculants and their potential use in treating dye wastewater. Journal of Hazardous Materials, 152(1), 221-227.
  • 40. Zhang P., Hahn H.H., Hoffmann E., Zeng G. 2004. Influence of some additives to aluminum species distribution in aluminum coagulants. Chemosphere, 57, 1489-1494.
  • 41. Zhao Y., Cheng G., Xiang Y., Long F., Dong C. 2018. Thermodynamic Study of the Corrosion of Refractories by Sodium Carbonate. Materials, 11, 2197-2208.
  • 42. Zhong J., Sun X., Wang C. 2003. Treatment of oily wastewater produced from refinery processes using flocculation and ceramic membrane filtration. Separation and Purification Technology, 32(1–3) 93-98.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7914378-7226-433e-882c-a5f3028ec9e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.