

83

STORE: EMBEDDED PERSISTENT STORAGE FOR CLOJURE

PROGRAMMING LANGUAGE

Konrad Grzanek
1

1
IT Institute, Academy of Management, Lodz, Poland

kgrzanek@swspiz.pl

Abstract

Functional programming is the most popular declarative style of programming.

Its lack of state leads to an increase of programmers' productivity and software

robustness. Clojure is a very effective Lisp dialect, but it misses a solid

embedded database implementation. A store is a proposed embedded database

engine for Clojure that helps to deal with the problem of the inevitable state by

mostly functional, minimalistic interface, abandoning SQL and tight integration

with Clojure as a sole query and data-processing language.

Key words: Functional programming, Lisp, Clojure, embedded database

1 Introduction

Functional programming languages and functional programming style in

general have been gaining a growing attention in the recent years. Lisp

created by John McCarthy and specified in [8] is the oldest functional pro-

gramming language. Some of its flavors (dialects, as some say [9]) are still in

use today. Common Lisp was the first ANSI standardized Lisp dialect [13]

and Common Lisp Object System (CLOS) was probably the first ANSI stan-

dardized object oriented programming language [14]. Apart from its outstand-

ing features as a Common Lisp subset.

Various Lisps were used in artificial intelligence [11] and to some extent

the language comes from AI labs and its ecosystem. Common Lisp was used

as the language of choice by some AI tutors, like Peter Norvig (in [10]). But

the whole family of languages address general problems in computer science,

not only these in AI.

John Backus argues [3] that the functional style is a real liberation from the

traditional imperative languages and their problems. Many other scientists and

famous programmers confirm the fact of really hard to solve issues in pro-

gramming related to C language features and it's derivatives. Coders at Work

[12] by Peter Seibel are one of the sources of vital examples. Abelson and

Grzanek K.

84

Sussman in Structure and Interpretation of Computer Programs [9] describe

in details two formal models behind computational processes, namely the

functional model based on the λ-calculus by Alonzo Church [2] and the envi-

ronmental model in which the notion of state, variable and environmental

bindings are being introduced. The environmental model corresponds to the

original idea of universal computational machines made by A.M. Turing [1].

The functional model is founded on the notion of pure first-class functions.

The notion of state as stated by Backus in [3] has been considered after

him by many as the major cause of hard to solve problems appearing in the

concurrent programming and in critical robust systems programming in gen-

eral. This was and still is one of the reasons why functional languages like

ML, Haskell [5] and Lisp, of course, are so adequate in some kinds of applica-

tions [4].

Development of purely functional programming style forced the develop-

ment of effective persistent data structures. Works by Okasaki [6] and Bag-

well [7] opened the way for languages like Clojure created by Rich Hickey

[16, 15] to introduce software transactional memory as the most robust

known way to eliminate concurrency problems emerging from using the state

and variables in places where the ideal stateless functional style must be omit-

ted.

Apart from that Clojure is a JVM (Java Virtual Machine) language. It of-

fers full interoperability with Java and its libraries. That makes it a very inter-

esting choice for people who want to write the mainstream software in a

unique, robust way. Applying this language to solve common day-to-day pro-

gramming problems as well as scientific ones requires having a solid database

solution, including an embedded database.

2 Forces, environment and requirements

The idea to create an embedded database storage engine emerged from the

author's previous works on complex software systems like the design patterns

instances recognition tool described in PhD thesis [19]. There was also an

embedded db – the repository – capable of storing database items [18]. Alas

this successful solution has some severe limitations. The most important one

is the static nature of Java (in terms of the system type) for which the reposi-

tory was originally created. It practically closes any possible discussion on

whether to use it or not in Clojure, as any Lisp, the classic dynamically typed

system.

Store: Embedded Persistent Storage for Clojure …

85

2.1 Embedded database

As stated in [17], for many research and production applications, an ideal

database would have at least these characteristics:

- ability to manage thousands millions of objects, including complex ones,

- robustness

- resistance for heavy loads

- scalability due to large datasets

- tight integration with a high level programming language

- simple and expressive API

The integration with a programming language is of a special importance

because of two reasons. First of all, it allows the programmer to omit using

SQL and to go directly into coding the application logic and database queries

using only one, native language. We avoid unnecessary programming lan-

guages diversity here. The other reason is the performance issue; separating

application logic and database operations logic leads to a natural loss of per-

formance. Database and application communication channel is the bottleneck

here.

These requirements and considerations caused an immediate observation

that choosing an embedded solution would be the most reasonable thing to do,

if one thinks about creating a robust and highly scalable storage engine. We

also rely on our previous experiences and research results with the repository

storage engine described above.

2.2 Lack of state and persistence

Using pure procedures and assuming the lack of state as well as the time-

lessness of the computational model requires solid collections implementation

every collection is immutable. In this model, the procedures that model func-

tions in mathematics are side-effect free. This means that any collection

passed to a procedure will not be modified. If the procedure wants to apply

any modification to the original collection operand, it has to make a defensive

copy of the collection and return this newly created object with all the modifi-

cations applied. In the traditional programming languages like Java, C++, Ada

making a memory copy of the original is the only way to go. Unfortunately,

the cost of such an operation is so high that in practice this technique cannot

be applied as a general way of introducing immutability of collections. This is

the major reason for the apparent absence of the idea of immutable collections

in the mentioned languages and also in all languages considered mainstream

programmers' tools.

Clojure takes another approach using so called persistent collections. The

persistent collections are immutable, but they address the problem of pessi-

mistic time and memory behavior by exploiting interesting algorithmic tech-

Grzanek K.

86

niques that are in general based on re-usability and sharing. These were pre-

sented in detail in [7] and earlier in [6].

Apart from the idea of persistent collections, the database problems exist.

From now on one should assume that the word persistent holds its original

meaning that refers to storing information in the persistent storages. This is

what this paper really discusses. Unfortunately, in the case of the persistent

storage, no good solutions exist that really could save the programmers from

the notion of state, time and variables. This constatation comes from the cha-

racteristics of Turing machine's model underlying every computer; data being

stored on disk to be re-read in the future simply must be written on the “tape”.

And further, writing on the tape of UTM is equal to using a variable and the

assignment operation. It introduces inevitably the notion of state and time.

So there are no effective ways to omit falling into the statefulness when the

databases are being considered. The only way to deal with this annoying prob-

lem is trying to remove some inherent pain by solid implementation and tight

and elegant integration with the functional programming languages. Some

approaches like monads [20], have a really great mathematical background

but the way they hide the statefulness may be misleading to some program-

mers. Our conception assumes using a more traditional, yet powerful and

readable semantic solution.

2.3 Existing solutions

There are several Lisp database solutions. For Clojure there is a contribu-

tion library packaged as clojure.contrib.sql. The library offers a very high

level of abstraction different to the traditional relational database interface –

JDBC (Java Database Connectivity). But we seek for an embedded database

solution.

Common Lisp is the most mature technology in this respect. There is a ma-

ture and comprehensive module for Allegro Common Lisp (by Franz Inc.)

called Allegro Graph [21]. This database offers a great scalability and tight

language integration and is a base for some established Web 2.0 solutions

provided by the company. Its major deficiency from the research and academ-

ic point of view is its commercial character.

When we talk about non-commercial ones, we find Elephant: A Persitent

Object Database for Common Lisp [22]. This is a classic embedded non-

relational database having a solid CL interface built around Common Lisp

Object System. There are two problems in general related to using this data-

base. First of all it is a purely Common Lisp solution, and the second one – it

is CLOS dependent. We search for a slightly more lightweight engine and

Clojure – oriented.

There are also two other ways to deal with the problem in Clojure. The

Apache Derby [24] database may be embedded in the language using seam-

Store: Embedded Persistent Storage for Clojure …

87

less Clojure - Java interoperability and the fact that Derby is a Java database.

But Derby is still a traditional relational database with an SQL engine. This in

turn causes the tight db-language integration suffering.

Another, and probably the most interesting alternative is Fleet DB Clojure

binding [23]. This is a very promising attempt to build a very dynamic data-

base framework. It suffers a little bit from the already defined query language

(as stated before we want a “query-language IS the implementation language”

solution) and its major problem is the fact that it's a RAM database.

Finally, we got to the point of specifying the set of the additional design

and implementation requirements:

- The database should not be a relational one.

- Query language is the application logic language.

- Data should be stored on disk, not in the RAM memory.

- Engine should be suitable to store Clojure objects of any kind, except for

lazy collections, which should be converted to non-lazy.

- Finally, some previous experiences with a very effective repository model

and implementation should be used.

3 Design and API

The presented embedded database called Store is built with Berkeley DB

Java Edition [25] as a low-level storage engine. This is a reminiscence of the

previous author's works on the mentioned repository as described in [17], [18]

and [19] . But Store's features relate to the low-level persistence layer only

remotely. The source of its flexibility comes from its architectural design cor-

responding to the proposed layers of the abstraction described below.

3.1 Layers of abstraction

The following Fig. 1. presents abstraction layers of Store engine together

with the whole Clojure/JVM environment. Custom implemented elements are

marked bold. These layers will be described separately in the following sub-

sections.

Grzanek K.

88

Figure 1. Store engine abstraction layers

3.2 Sequences

They represent named persistent streams of natural numbers. Their role is

to provide unique auto-enumerated key values for stored objects. The basic

construct for referring to a sequence is:

(stored-sequence name start step)

where start is 0 by default and step is 1. If a sequence of the given name

does not exist, it will be created and registered in the engine's internals. An

example use is like:

(gen (stored-sequence :test)) ==> 0

(gen (stored-sequence :test)) ==> 1

(gen (stored-sequence :test)) ==> 2

resulting in 0, 1, 2, 3, … in subsequent calls. Procedure gen is one of a few

side-effect procedures in the whole framework. It returns the next number in

the sequence and “moves” the sequence onto the next value. :test is Clojure

keyword playing a role of the sequence's name.

Another procedure called recent returns the last generated number, but it is

side-effect free; it does not change the sequence's state:

(recent (stored-sequence :test)) ==> 2

In the end, two procedures may be used to delete a sequence or all se-

quences respectively:

(drop-sequence (stored-sequence :test))

(drop-all-sequences)

Store: Embedded Persistent Storage for Clojure …

89

3.3 Indexes

Indexes are the key storage mechanism and the key abstraction. We as-

sume a very simple view on data stored in our databases at this level. Every

index contains pairs of keys and values. There are two types of indexes:

1. Standard indexes. Keys and values are expected to be arrays of bytes and

must be specified when performing data manipulation.

2. Auto-enumerated indexes. Keys are expected to be of type Long (long

integer – java.lang.Long) and values are expected to be arrays of bytes.

When inserting a new value entry, the key is never specified, but the index

itself uses an internally assigned sequence to generate a new key.

Using the mechanism starts with creating a reference to an existing or a

created on demand index. Just like in the case of sequences, the name is the

encouraged way to make a reference.

(index :test)

By default the index is auto-enumerated. It may be specified explicitly by

passing an additional parameter like below:

(index :test :auto)

(index :test true)

On the other hand, it is possible to ensure creating a standard index:

(index :test :non-auto)

(index :test false)

It is worth noting that choosing a selected option (like above) is possible

only when creating a new index, that is requesting for a reference to an index

of a previously not-specified name. When requesting for an existing index, the

additional parameter value has to be omitted or correspond to the original

settings of the selected index. Violating the original settings will cause an

exception.

Indices, in opposition to the sequences, may (but do not have to) be expli-

citly closed after the use. The close operation is:

(close (index :test))

Another option for the programmers who want to use indexes within a

more idiomatic Clojure use-and-release pattern is using a canonical with-open

macro:

(with-open [i (index :test)]

 ...)

Grzanek K.

90

This is possible because (index …) is in fact a Java object of a type im-

plementing a close() method.

All indices opened during the application run-time and not closed will be

closed at the system shutdown.

Retrieving value for a given key is possible by calling a method get on the

index reference:

(.get (index :test) <key>)

or in a more Java-ish way:

(.. (index :test) (get <key>))

A similar pattern exists for deleting key-value entry

(.delete (index :test) <key>)

(.. (index :test) (delete <key>))

and for storing (insertion or updates):

(.put (index :test) <key> <value>)

(.. (index :test) (put <key> <value>))

In the case of inserting into an auto-enumerated index, the key must not be

provided, so that the above call reduces to:

(.put (index :test) <value>)

(.. (index :test) (put <value>))

An index may be deleted with all its data very similarly to the described

way of deleting sequences:

(drop-index (index :test))

(drop-all-indices)

3.4 Store: entries and data conversion

Entries and store mechanism are the key way to refer to the data stored in

an index. First of all, there is a Clojure multi-method [16] called entries. The

method always returns a sequence of pairs <key, value> representing index

content:

(entries (index :test))

Store: Embedded Persistent Storage for Clojure …

91

When called with and index as an argument, the procedure returns a se-

quence of pairs each containing the key and value in the form of byte arrays.

It is a very raw, low-level way to the access data.

To make the data to be more programmer-friendly, there exists an abstract

notion of the highest abstraction level, namely store. The store is the most

effective and preferred way to work with the whole database engine. Again,

like in the case of indices, one may refer to a named store giving its name. It

must be mentioned that a store is only a very wrapper around an index of the

same name as the store. The store references may be created in multiple ways:

(store (index :test)) # Refereing to an index

(store :test) # Refereing to an index by name

When making a reference like above, the resulting store assumes the val-

ues in the index may be of any type serializable to Java string and capable of

being read-from-string by the typical Clojure evaluation mechanism. Addi-

tionally when passing a name like :test to make a store reference means refer-

ring to an auto-enumerated index.

Using conversion to Java string and reading into Clojure object as the de-

fault serialization mechanism is enough in most cases, especially when storing

composite Clojure objects: maps, vectors and sets. Nevertheless, sometimes it

is better to specify the type of values or keys to achieve more fine-grained

serialization:

(store <index-or-name> <value-type>) # auto-enumerated

(store <index-or-name> <key-type> <value-type>)

where key-type and value-type belong to one of :str :boolean :byte :short

:char :int :long :float :double :bigint :bitset.

For example

(store (index :test :non-auto) :str :bigint)

creates a store around a standard non-auto-enumerated index to map

strings onto java.lang.BigInteger objects. The same effect may be achieved by

(store :test :str :bigint)

Finally

(entries (store :test :str :bigint))

now makes a sequence of pairs <String, BigInteger>. There are also two

convenience procedures to convert pairs into the more object-oriented form.

Grzanek K.

92

(itemize (entries (store ...)))

Returns a sequence of items {:id key, :data value}.

And further

(vectorize (entries (store ...)))

produces a sequence of vectors [key value].

3.5 Resource management

It is one of the key issues when creating a robust database API to provide

a clean and easy to use resource management interface. In Store there is a

simple doclean macro. Calling entries results in opening a database cursor in

the implementation layer. And this call must be done in a body of (doclean

…) form:

(doclean (entries (store ...))

(doclean (entries (index ...))

Omitting doclean causes an immediate signal:

Entries may be accessed only in a clean-up context.

 [Thrown class java.lang.IllegalStateException]

So there is no place for the programmer to introduce a resource leak. The

macro evaluates its body and returns a result – the value of its last expression.

This is a classic Lisp behavior. Moreover, it releases all the database cursors

opened inside the body immediately after returning the result. doclean is ex-

ception-safe.

In the end, it should be noted that the pattern is a common mechanism for

our Clojure extension library (it belongs to the custom core namespace).

3.6 Transactions

Currently there is no transactional interface in the Store engine. It may be

added in the future because Store's implementation uses the low-level storage

engine that fully supports transactions.

4 Implementation

The abstraction layers of Store were implemented using trusty, open and

free technology.

Store: Embedded Persistent Storage for Clojure …

93

The low-level storage engine behind Clojure is Oracle Berkeley DB Java

Edition [25]. It is the same storage engine as the one used when implementing

the mentioned repository [17], [18]. The engine is known for an excellent

performance and reliability [26], [27]. It also supports transactions, making it

possible to implement transactional API for Store in the near future.

Most parts of Store were implemented in Clojure. Few elements were

moved to the Java level of implementation. It was mostly on the Clojure -

Berkeyey DB surface.

5 Applications and observed performance

There was one major application using Store. It was an attempt to build a

Wikipedia graph representation for some future research. The experiment was

performed on a single PC machine running common low-cost hardware (2

cores, 2 GHz, 2MB RAM, HDD 5400 rpm, Ubuntu Linux). The experiment

ended with 130 thousands of Wikipedia nodes indexed and over 20 million

of edges. Visiting each node by an algorithm, including full deserialization

takes 15-17 s. Also counting all edges takes 15-20 s. This is very optimistic

time, even for the languages considered more performance-oriented.

The whole process of parsing Wikipedia pages and building all dependen-

cies took about 70 hours. Inserting data into the database was no bottleneck.

The decisive points in terms of the performance were the Internet communica-

tion (grabbing the Wikipedia web pages), parsing and some AI algorithms.

During that time both algorithms (implemented also in Clojure) and Store

were behaving perfectly well. There were no observable leaks of any re-

sources (memory nor db cursors).

6 Conclusion

The presented embedded storage engine for the Clojure programming lan-

guage offers a great scalability and robustness. It may be used both in research

projects and in the industrial applications. Supposedly it may become the first

step towards creating a more stateless solution exploiting Software Transac-

tional Memory. Up till it helped to build a performance- and stability-

demanding research application and this is its best showcase as a production-

ready solution.

Grzanek K.

94

References

1. Turing A.M., 1936, On computable numbers, with an application to the Ent-

scheidungsproblem, Proceedings of the London Mathematical Society 42 (2)

2. Church A., 1932, A set of postulates for the foundation of logic. Annals of Ma-

thematics, Series 2, 33:346366

3. Backus J., 1978, Can Programming Be Liberated from the Von Neumann Style?

A Functional Style and It's Algebra of Programs, ACM Turing Award Lecture

(1977), Communications of the ACM (August 1978) vol. 2

4. Hudak P., 1989, Conception, Evolution, and Application of Functional Pro-

gramming Languages, ACM Computing Surveys, Vol. 21, No. 3

5. Peyton Johnes S. L., 1987, The Implementation of Functional Programming

Language, Prentice Hall International (UK) Ltd

6. Okasaki Ch., 1996, Purely Functional Data Structures, PhD thesis submitted to

School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213

7. Bagwell P., 2001, Ideal Hash Trees, Es Grands Champs vol. 1195

8. McCarthy J., 1960, Recursive Functions of Symbolic Expressions and Their

Computation by Machine, CACM 3 (4), pp. 184-195

9. Abelson H., Sussman G. J., 1984, Structure and Interpretation of Computer

Programs, ISBN 0-262-01077-1, MIT Press

10. Norvig, P., 1991, Paradigms of Artificial Intelligence Programming: Case Stu-

dies in Common Lisp, Morgan Kaufmann

11. Russel S. J., Norvig P., 2003, Artificial Intelligence A Modern Approach Second

Edition, Pearson Education Inc., Upper Saddle River, New Jersey 07458

12. Seibel P., 2009, Coders at Work, Apress 1
st
 edition

13. Graham P., 1993, On Lisp - Advanced Techniques for Common Lisp. Prentice

Hall

14. Kiczales G., Rivieres J., Bobrow D.G., 1991, The Art of the Metaobject Proto-

col, MIT Press, ISBN 0-262-61074-4

15. Clojure Website, 2001, http://clojure.org

16. Halloway S., 2009, Programming Clojure, ISBN: 978-1-93435-633-3, The

Pragmatic Bookshelf

17. Grzanek K., Grzybowski R., 2005, Metody przechowywania danych w systemie

rozpoznawania wzorców projektowych w oprogramowaniu, Zeszyty Naukowe

AGH, seria Automatyka, Vol. 9, Book 3, pp. 823-832

18. Grzanek K., Grzybowski R., 2007, Implementation of the Repository for the

Source Code Similarities Analysis System, Some New Ideas and Research Re-

sults in Computer Science, Proceedings of the 2nd Polish and International PD

Forum-Conference on Computer Science October 16-19, 2006 łódź, Smardze-

wice, Poland, Academic Publishing House EXIT, Warsaw, Vol I, Part D, pp.

373-386

Store: Embedded Persistent Storage for Clojure …

95

19. Grzanek K., 2009, Realizacja systemu wyszukiwania wystąpień wzorców projek-

towych w oprogramowaniu przy zastosowaniu metod analizy statycznej kodu

źródłowego, PhD Thesis, Wydział Inżynierii Mechanicznej i Informatyki, Poli-

technika Częstochowska

20. Moggi E., 1991, Notions of Computation and Monads, Information and Compu-

tation 93 (1)

21. Allegro Graph, 2010, website: http://www.franz.com/agraph/allegrograph/

22. Elephant: A Persitent Object Database for Common Lisp, 2010, Website:

http://common-lisp.net/project/elephant/

23. Fleet DB, Introduction, 2010, http://fleetdb.org/docs/introduction.html

24. Apache Derby, 2010, website: http://db.apache.org/derby/

25. Oracle Berkeley DB Java Edition, 2010, website:

http://www.oracle.com/database/berkeley-db/je/index.html

26. Oracle Berkeley DB Java Edition vs. Apache Derby: A Performance Compari-

son, 2010, http://www.oracle.com/technology/products/berkeley-db/pdf/je-

derby-performance.pdf

27. A Comparison of Oracle Berkeley DB and Relational Database Management

Systems, 2010, http://www.oracle.com/database/docs/Berkeley-DB-v-

Relational.pdf

96

