Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents results of FEM modelling as well as properties and microstructure of the ultralow-carbon ferritic steel after the unconventional SPD process—DRECE (dual rolls equal channel extrusion). Based on the conducted numerical simulation information about the deformation behaviour of a steel strip during the DRECE process was obtained. The simulation results were experimentally verified. The influence of DRECE process on hardness distribution, fracture behaviour and microstructure evolution of the investigated steel was analysed. The increase of steel strength properties after subsequent deformation passes was confirmed. The microstructural investigations revealed that the processed strips exhibit the dislocation cell microstructure and subgrains with mostly low-angle grain boundaries. The grains after processing had relatively high dislocation density and intense microband formation was observed. It was also proved that this unconventional SPD method fosters high grain refinement.
Czasopismo
Rocznik
Tom
Strony
424--434
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
- Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
autor
- Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
autor
- Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
autor
- Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Faculty of Materials Engineering, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
autor
- Faculty of Mechanical Engineering, VSB, Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
Bibliografia
- [1] Gleiter H. Nanostructured materials: basic concept and microstructure. Acta Mater. 2000;48:1–29.
- [2] Valiev RZ. Developing of SPD processing bulk nanostructured materials. Met Mater. 2001;7:413–20.
- [3] Zhu YT, Langdon TG. The fundamentals of nanostructured materials processed by severe plastic deformation. JOM. 2004;58:58–63.
- [4] Alexander DJ. New methods for severe plastic deformation processing. J Mater Eng Perform. 2007;16:360–74.
- [5] Song R, Ponge D, Raabe D, Speer JG, Matlock DK. Overview of processing, microstructural and mechanical properties of ultrafine grained bcc steels. Mater Sci Eng A. 2006;441:1–17.
- [6] Xu C, Furukawa M, Horita Z, Langdon TG. The evolution of homogeneity and grain refinement during equal-channel angular pressing: a model for grain refinement in ECAP. Mater Sci Eng A. 2005;398:66–76.
- [7] Degtyarev MV. Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion. Acta Mater. 2007;55:6039–50.
- [8] Jiang H, Zhu Y, Butt D, Alexandrov IV. Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater Sci Eng A. 2000;290:128–38.
- [9] Tsuji N, Ueji R, Minamino Y. Nanoscale crystallographic analysis of ultrafine grained IF steel fabricated by ARB process. Scr Mater. 2002;47:69–76.
- [10] Zherebtsov S, Salischchev G, Łojkowski W. Strengthening of a Ti-6Al-4V titanium alloy by means of hydrostatic extrusion and other methods. Mater Sci Eng A. 2009;515:43–8.
- [11] Bochniak W, Korbel A. Type forming: forging of metals under complex conditions of the process. J Mater Process Technol. 2003;134:120–34.
- [12] Sabbaghianrad S, Langdon TG. A critical evaluation of the processing of an aluminium 7075 alloy using a combination of ECAP and HPT. Mater Sci Eng A. 2013;596:126–35.
- [13] Wongsa-Ngam J, Wen H, Langdon TG. Microstructural evolution in a Cu–Zr alloy processes by a combination of ECAP and HPT. Mater Sci Eng A. 2012;579:105–15.
- [14] Stepanov ND, Kuznetsov AV, Salishchev GA, Raab GI, Valiev RZ. Effect of cold rolling on microstructure and mechanical properties of copper subjected to ECAP with various numbers of passes. Mater Sci Eng A. 2012;554:105–15.
- [15] Rodak K, Urbańczyk-Gucwa A, Jabłońska MB. Microstructure and properties of CuCr0.6 and CuFe2 alloys after rolling with the cyclic movement of rolls. Arch Civil Mech Eng. 2018;18:500–7.
- [16] Rusz S, Cizek L, Michenka V, Dutkiewicz V, Salajka J, Hilser M, Tylsar S, Kedron J, Klos M. New type of device for achievement of grain refinement in metal strip. Arch Mater Sci Eng. 2014;69:38–44.
- [17] Hilser O, Salajka M, Rusz S. Study of mechanical properties of steel and selected types of non-ferrous alloys after application of the DRECE process. In: Proceedings 7th International Conference on Nanomaterials - Research & Application - Nanocon 2015. Brno, Czech Republic. https://www.confer.cz/nanocon/2015/574-study-of-mechanical-properties-of-steel-and-selected-types-of-non-ferrous-alloys-after-application-of-the-drece-process. Accessed 10 Sep 2020.
- [18] Kowalczyk K, Jabłońska M, Rusz S, Bednarczyk I. Influence of the DRECE process of severe plastic deformation on the mechanical properties of the ultra-low carbon interstitial free steel. Arch Metall Mater. 2018;63:1957–61.
- [19] Rusz S, Hilser O, Ochodek V, Cizek L, Kraus M, Mares V, Grajcar A, Svec K. Effect of severe plastic deformation on mechanical and fatigue behaviour of medium-C sheet steel. J Min Metall Sect B. 2020. https://doi.org/10.2298/JMMB190910008R.
- [20] Suo T, Li Y, Guo Y, Liu Y. The simulation of deformation distribution during ECAP using 3D finite element method. Mater Sci Eng A. 2006;432:269–74.
- [21] Mani B, Jahedi M, Paydar M. A modification on ECAP process by incorporating torsion deformation. Mater Sci Eng A. 2011;528:4159–65.
- [22] Zhao WJ, Ding H, Ren YP, Hao SM, Wang J, Wang JT. Finite element simulation of deformation behavior of pure aluminum during equal channel angular pressing. Mater Sci Eng A. 2005;411:348–52.
- [23] Rosochowski A, Olejnik L. Finite element simulation of severe plastic deformation processes. J Mater Des Appl. 2007;221:311–24.
- [24] Rosochowski A, Olejnik L. Numerical and physical modelling of plastic deformation in 2-turn equal channel angular extrusion. J Mater Process Technol. 2002;126:309–16.
- [25] Bourke L, Beyerlein M, Alexander J, Clausen DJ. Finite element analysis of the plastic deformation zone and working load in equal channel angular extrusion. Mater Sci Eng A. 2004;382:17–236.
- [26] Luis-Perez CJ, Luri-Irigoyen R, Gastón-Ochoa R. Finite element modelling of an Al–Mn alloy by equal channel angular extrusion (ECAE). J Mater Process Technol. 2004;154:846–52.
- [27] Dumoulin S, Roven HJ, Werenskiold JC, Valberg HS. Finite element modeling of equal channel angular pressing: effect of material properties, friction and die geometry. Mater Sci Eng A. 2005;410:248–51.
- [28] Baik SC, Estrin Y, Kim HS, Hellmig RJ. Dislocation density-based modeling of deformation behavior of aluminium under equal channel angular pressing. Mater Sci Eng A. 2003;351:86–97.
- [29] Rusz S, Salajka M, Hilser O, Dutkiewicz J, Boruta J, Svec J. Influence of the forming tool parameters on the grain refinement of brass by SPD process. Metal Form. 2016;27(4):301–14.
- [30] Saray O, Purcek G, Karaman I, Neindorf T, Maier HJ. Equal-channel angular sheet extrusion of interstitial-free (IF) steel: microstructural evolution and mechanical properties. Mater Sci Eng A. 2011;528:6573–83.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f78e362e-81cd-4026-abfc-f2326545a2a9