PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simultanous Modification of Dimensional Stability and Mechanical Processing of Injection Molded Polypropylene Using Gypsum Waste and Chemical Blowing Agen

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The dimensional accuracy of injection molded parts plays an increasingly significant role in the plastics processing industry, as is the utilization of recycled raw materials. To obtain the desired dimensions and properties of injection moldings, various material modification methods are used simultaneously. The conducted research aimed to assess the impact of hybrid modification of non-nucleated heterogeneously isotactic polypropylene using recovered phosphogypsum and a chemical blowing agent on the shrinkage value and mechanical properties of injection molded parts. Additionally, changes in dimensions and properties of composites with solid and porous structures that occur within 1000 hours of their removal from the injection mold were determined. The research showed that the filler used acts as a nucleating agent causing an increase in the shrinkage of the parts, up to 10 wt%. Similar changes were observed in the case of tensile strength. The increase in the value of this parameter at the lowest phosphogypsum contents used was most likely the result of changes in the crystalline structure of polypropylene. Changes in the mechanical properties of the molded parts that occurred during conditioning are correlated with shrinkage changes that occur from the moment the molded parts are removed from the injection mold. Young's modulus and tensile strength increased linearly for both solid and porous moldings. However, the rate of stiffness increases as a function of shrinkage changes with the filler content. Nevertheless, the opposite tendency was observed in the case of changes in impact strength, the values of which decreased as a function of shrinkage to the greatest extent in the case of unfilled polypropylene.
Twórcy
  • Department of Manufacturing Techniques, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, ul. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Vicim Sp. z o.o., ul. Marii Skłodowskiej-Curie 61, 87-100 Toruń, Poland
  • Department of Manufacturing Techniques, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, ul. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Department of Manufacturing Techniques, Faculty of Mechanical Engineering, Bydgoszcz University of Science and Technology, ul. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Bibliografia
  • 1. Plastics – the Facts 2022, report by the Plastics Europe association.
  • 2. Baur, E.; Osswald, T.A.; Rudolph, N. Plastics Handbook; Hanser Publications: Munich, Germany, 2019; 360–366.
  • 3. Al-Samhan, M.; Al-Attar, F. Comparative analysis of the mechanical, thermal and barrier properties of polypropylene incorporated with CaCO3 and nano CaCO3. Surfaces and Interfaces. 2022; 31: 102055, DOI:10.1016/j.surfin.2022.102055.
  • 4. Shelesh-Nezhad, K.; Taghizadeh, A. Shrinkage behavior and mechanical performances of injection molded polypropylene/talc composites. Polym. Eng. Sci. 2007; 47: 2124–2128.
  • 5. Delli, E.; Gkiliopoulos, D.; Bikiaris, D.; Chrissafis, K. Thermomechanical characterization of e-glass fiber reinforced random polypropylene. Macromolecular Symposia. 2022; 405(1): 2100226, DOI:10.1002/masy.202100226.
  • 6. Mulle, M.; Wafai, H.; Yudhanto, A.; Lubineau, G.; Yaldiz, R.; Schijve, W.; Verghese, N. Influence of process-induced shrinkage and annealing on the thermomechanical behavior of glass fiberreinforced polypropylene. Compos. Sci. Technol. 2019; 170: 183–189.
  • 7. Barczewski, M.; Andrzejewski, J.; Majchrowski, R.; Dobrzycki, K.; Formela, K. Mechanical Properties, Microstructure and Surface Quality of Polypropylene Green Composites as a Function of Sunflower Husk Waste Filler Particle Size and Content. J. Renew. Mater. 2021; 9: 841–853.
  • 8. Guna, V.; Ilangovan, M.; Rather, M.H.; Giridharan, B.V.; Prajwal, B.; Krishna, K.V.; Venkatesh, K.; Reddy, N. Groundnut shell/rice husk agro-waste reinforced polypropylene hybrid biocomposites. Journal of Building Engineering 2020; 27: 100991.
  • 9. de Lima, DC.; de Melo, RR.; Santana, RRC.; Botan, E.; Stangerlin, DM.; Santana, RMC. Wood plastic composites manufactured with sawmill waste and discarded polypropylene packaging. Nativa 2018; 6: 79–84.
  • 10. Wąsicki, A.; Kościuszko, A. DSC investigations of the surface layer of an aged polypropylene/wood composite. Polimery 2011; 56: 401–404.
  • 11. Jubinville, D.; Esmizadeh, E.; Tzoganakis, C.; Mekonnen, T. Thermo-mechanical recycling of polypropylene for the facile and scalable fabrication of highly loaded wood plastic composites. Compos. B Eng. 2021; 219: 108873.
  • 12. Basso, A.; Zhang, Y.; Linnemann, L.; Hansen, H.N. Study of the distribution of rubber particles in ground tire rubber/polypropylene blends. Mater. Today Proc. 2021; 34: 311–316.
  • 13. Kim, S.; Lee, M.; Lee, H.; Jeong, H.; Park, Y.; Jhee, K.-H.; Bang, D. Effects of peroxides on the properties of reclaimed polypropylene/waste ground rubber tire composites prepared by twin screw extrusion. Elastomers Compos. 2016; 51: 17–23.
  • 14. Lu, Y.; Yang, Y.; Xiao, P.; Feng, Y.; Liu, L.; Tian, M.; Li, X.; Zhang, L. Effect of interfacial enhancing on morphology, and rheological properties of polypropylene-ground tire rubber powder blend. J. Appl. Polym. Sci. 2017; 134: 45354.
  • 15. Kościuszko, A.; Czyżewski, P.; Wajer, Ł.; Ościak, A.; Bieliński, M. Properties of polypropylene composites filled with microsilica waste. Polimery 2020; 65: 99–104.
  • 16. Nunez-Decap, M.; Wechsler-Pizarro, A.; VidalVega, M. Mechanical, physical, thermal and morphological properties of polypropylene composite materials developed with particles of peach and cherry stones. Sustainable Materials and Technologies 2021; 29: e00300.
  • 17. Kościuszko, A.; Czyżewski P.; Rojewski, M. Modification of laser marking ability and properties of polypropylene using silica waste as a filler. Materials 2021; 14: 6961.
  • 18. Solanki, B.S.; Sheorey, T.; Singh, H. Experimental and numerical investigation of shrinkage and sink marks on injection molded polymer gears: A case study. Int. J. Interact. Des. Manuf. 2022.
  • 19. Postawa, P. Shrinkage of moldings and injection molding conditions. Polimery 2005; 50: 201–207.
  • 20. Xu, Y.; Yang, W.; Xie, B.; Liu, Z.; Yang, M. Effect of injection parameters and addition of nanoscale materials on the shrinkage of polypropylene copolymer. Journal of Macromolecular Science, Part B: Physics 2009; 48(3): 573–586.
  • 21. Kościuszko, A.; Marciniak, D.; Sykutera, D. Postprocessing time dependence of shrinkage and mechanical properties of injection-molded polypropylene. Materials 2021; 14: 22.
  • 22. Ryu, Y.; Sohn, J.S.; Kweon, B.C.; Cha, S.W. Shrinkage optimization in talc- and glass-fiber-reinforced polypropylene composites. Materials 2019; 12: 764.
  • 23. Tan, HS.; Yu, YZ.; Xing, LX.; Zhao, LY; Sun, HQ. Density and shrinkage of injection molded impact polypropylene copolymer/coir fiber composites. Polymer-Plastics Technology and Engineering 2013; 52: 257–260.
  • 24. Tao, Y.; Hindula, S.; Heinemann, R.; Gomes, A.; Bartolo, P.J. A study of physico-mechanical properties of hollow glass bubble, jute fibre and rubber powder reinforced polypropylene compounds with and without MuCell technology for lightweight applications. Polymers 2020; 12: 2664.
  • 25. Gonzalez-Monterde, J.; Hain, J.; Sanchez-Soto, M.; Maspoch, M.L. Microcellular injection moulding: A comparison between MuCell process and the novel micro-foaming technology IQ Foam. J. Mater. Processing Technol. 2019; 268: 162–170.
  • 26. Nowinka, B.; Czyżewski, P.; Sykutera, D.; Marciniak, D. Analysis Of Microcellular Injection Molding With Use Of FEM Simulation, AIP Conf. Proc. 2022; 2611: 130009, https://doi.org/10.1063/5.0121035.
  • 27. Barbosa, R.C.N.; Campilho, R.D.S.G.; Silva, F.J.G. Injection mold design for a plastic component with blowing agent. Procedia Manuf. 2018; 17: 774–782.
  • 28. Garbacz, T.; Palutkiewicz, P. Effectiveness of blowing agents in the cellular injection molding. Process. Cell. Polym. 2015; 34: 189–214.
  • 29. Konczal, N.; Nowinka, B.; Bieliński, M. Influence of chemical foaming on the structure and selected properties of glass fiber reinforced PA6. Polimery 2022; 67: 475–482.
  • 30. Palutkiewicz, P.; Garbacz, T. Assessment of the effectiveness of selected blowing agents in the injection molding of thermoplastic materials. Polimery 2017; 62: 447–456.
  • 31. Kosciuszko, A.; Rojewski, M.; Nowinka, B.; Patalas, F. Post-Molding Shrinkage, Structure and Properties of Cellular Injection-Molded Polypropylene. Materials 2022; 15: 7079. https:// doi.org/10.3390/ma15207079.
  • 32. Llewelyn, G.; Rees, A.; Griffiths, C.A.; Jacobi, M. A novel hybrid foaming method for low-pressure microcellular foam production of unfilled and talc-filled copolymer polypropylenes. Polymers 2019; 11: 1896.
  • 33. Palutkiewicz, P.; Trzaskalska, M.; Bociąga, E. The influence of blowing agent addition, talc filler content, and injection velocity on selected properties, surface state, and structure of polypropylene injection molded parts. Cell. Polym. 2020; 39: 1.
  • 34. Fiebig, J.; Gahleitner, M.; Paulik, C.; Wolfschwenger, J. Ageing of polypropylene: processes and consequences. Polymer Testing. 1999; 18: 257–266, https://doi.org/10.1016/S0142-9418(98)00023-3.
  • 35. Dudić, D.; Djoković, V.; Kostoski, D. The high temperature secondary crystallisation of aged isotactic polypropylene. Polym. Test. 2004; 23: 621–627.
  • 36. Ullah, J.; Harkin-Jones, E. ; McIlhagger, A.; Magee, C.; Tormey, D.; Dave, F.; Sherlock, R.; Dixon, D. The effect of masterbatch pigments on the crystallisation, morphology, and shrinkage behaviour of Isotactic Polypropylene. Journal of Polymer Research, 2022; 29: 183, https://doi.org/10.1007/s10965-022-03028-z
  • 37. Shelesh-Nezhad, K.; Orang, H.; Motallebi, M.: Crystallization, shrinkage and mechanical characteristics of polypropylene/CaCO3 nanocomposites. Journal of Thermoplastic Composite Materials 2013; 26: 544–554.
  • 38. Jung, C-S.; Hwang, S-H. Effects of filler types and content on shrinkage behavior of polypropylene composites. Elastomers and Composites 2022; 57: 107–113.
  • 39. Menczel, J.; Varga, J. Influence of nucleating agents on crystallization of polypropylene. 1.Talc as a nucleating-agent. Journal of Thermal Analysis. 1983; 28: 161–174.
  • 40. Kowalska, E.; Wielgosz, Z; Żubrowska, M. Pasynkiewicz, S.; Choroś, M. Application of waste phosphogypsum in thermoplastic and chemosetting composites. Polimery 2004; 49: 828–836.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f78628a5-228d-44d4-bff8-722ece381aeb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.