PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental characterization of the AA7075 aluminum alloy using hot shear compression test

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The experimental characterization of the material under shear loading is essential for researchers to study the plastic behavior of materials during manufacturing processes. Indeed, regardless of the loading mode, ductile materials mainly deform plastically under shear loading. Thus, for such material behavior analysis, shear tests are very useful. In this paper, a test procedure is defined to characterize the shear deformation of AA7075 aluminum alloy at high strain under compression loading. The Finite Element (FE) simulation is used to select the suitable specimen geometry for the testing. Finally, the experimental tests are carried out using a conventional compression device at a constant strain rate of 0.1 s−1 and at an elevated temperature of 20–500 °C. The results show that the drop in the flow stress curved relative to the increase in temperature exhibits the softening mechanism. The homogeneous behavior of the shear strain along the shear region was also observed and shown by the macro and micro images. The effect of temperature and equivalent strain on the evolution of the microstructure is discussed in detail. It is discovered that, various dynamic recrystallization mechanisms were recorded for aluminum alloy AA7075 depending on the imposed strain conditions.
Rocznik
Strony
95--111
Opis fizyczny
Bibliogr. 45 poz., fot., rys., wykr.
Twórcy
  • TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Científico Y Tecnológico de Gipuzkoa, 20009 Donostia-San Sebastián, Spain
  • Department of Mechanical Engineering, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
  • TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Científico Y Tecnológico de Gipuzkoa, 20009 Donostia-San Sebastián, Spain
  • CNRS, University Bordeaux, I2M-DuMAS, UMR 5295, 33400 Talence, France
  • CNRS, University Bordeaux, I2M-DuMAS, UMR 5295, 33400 Talence, France
  • Department of Mechanical Engineering, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
  • CNRS, University Bordeaux, I2M-DuMAS, UMR 5295, 33400 Talence, France
  • Department of Mechanical Engineering, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
  • IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
Bibliografia
  • [1] Tarigopula V, et al. A study of large plastic deformations in dual phase steel using digital image correlation and FE analysis. Exp Mech. 2008;48(2):181–96.
  • [2] Rusinek A, Klepaczko J. Shear testing of a sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress. Int J Plast. 2001;17(1):87–115. https ://doi.org/10.1016/S0749 -6419(00)00020 -6.
  • [3] Hundy BB, Green AP. A determination of plastic stress-strain relations. J Mech Phys Solids. 1954;3(1):16–21. https ://doi.org/10.1016/0022-5096(54)90035 -6.
  • [4] Murr L. Metallurgical applications of shock-wave and high-strain-rate phenomena. New York: CRC Press; 1986. p. 1136.
  • [5] Campbell JD, Ferguson WG. The temperature and strain-rate dependence of the shear strength of mild steel. Philos Mag. 1970;21(169):63–82. https ://doi.org/10.1080/14786 43700 82383 97.
  • [6] Wei Z, Yu J, Li J, Li Y, Hu S. Influence of stress condition on adiabatic shear localization of tungsten heavy alloys. Int J Impact Eng. 2001;26(1–10):843–52. https ://doi.org/10.1016/S0734 -743X(01)00137 -3.
  • [7] Gray GT, Vecchio KS, Livescu V. Compact forced simple-shear sample for studying shear localization in materials. Acta Mater. 2016;103:12–22. https ://doi.org/10.1016/j.actam at.2015.09.051.
  • [8] Kim D-K, Lee S, Hyung Baek W. Microstructural study of adiabatic shear bands for med by high-speed impact in a tungsten heavy alloy penetrator. Mater Sci Eng A. 1998;249(1–2):197–205.
  • [9] Klopp RW, Clifton RJ, Shawki TG. Pressure-shear impact and the dynamic viscoplastic response of metals. Mech Mater. 1985;4(3–4):375–85. https ://doi.org/10.1016/0167-6636(85)90033 -X.
  • [10] B. Dodd and Y. Bai (2012) Adiabatic shear Localization. Elsevier. https ://doi.org/10.1016/C2011 -0-06979 -X.
  • [11] Peirs J, Verleysen P, Degrieck J. Novel technique for static and dynamic shear testing of Ti6Al4V sheet. Exp Mech. 2012;52(7):729–41. https ://doi.org/10.1007/s1134 0-011-9541-9.
  • [12] Brosius A, Yin Q, Güner A, Tekkaya AE. A new shear test for sheet metal characterization. Steel Res Int. 2011;82(4):323–8. https ://doi.org/10.1002/srin.20100 0163.
  • [13] M Isakov, J Seidt, K O ̈stman, A Gilat, and V-T. Kuokkala, “Characterization of a Ferritic stainless sheet Sseel in simple shear and uniaxial tension at different strain rates,” in volume 8: mechanics of solids, structures and fluids; vibration, acoustics and wave propagation, Jan, 2011, pp. 101–109. https ://doi.org/10.1115/IMECE 2011-63141.
  • [14] Rittel D, Lee S, Ravichandran G. A shear-compression specimen for large strain testing. Exp Mech. 2002;42(1):58–64. https ://doi.org/10.1007/bf024 11052 .
  • [15] Dorogoy A, Rittel D, Godinger A. A shear-tension specimen for large strain testing. Exp Mech. 2016;56(3):437–49. https ://doi.org/10.1007/s1134 0-015-0106-1.
  • [16] Moemeni S, Zarei-Hanzaki A, Abedi HR, Torabinejad V. The application of shear compression specimen to study shear deformation behavior of AZ31 Mg Alloy at high temperatures and quasi-static regime. Exp Mech. 2012;52(6):629–36. https ://doi. org/10.1007/s1134 0-011-9525-9.
  • [17] Bouvier S, Haddadi H, Levée P, Teodosiu C. Simple shear tests: experimental techniques and characterization of the plastic anisotropy of rolled sheets at large strains. J Mater Process Technol. 2006;172(1):96–103. https ://doi.org/10.1016/j.jmatp rotec .2005.09.003.
  • [18] Chwalik P, Klepaczko JR, Rusinek A. Impact shear-numerical analyses of ASB evolution and failure for Ti-6Al-4V alloy. J Phys. 2003;4:257–62. https ://doi.org/10.1051/jp4:20020 703.
  • [19] Rokni MR, Zarei-Hanzaki A, Roostaei AA, Abedi HR. An investigation into the hot deformation characteristics of 7075 aluminum alloy. Mater Des. 2011;32(4):2339–44. https ://doi.org/10.1016/j.matde s.2010.12.047.
  • [20] Joshi TC, Prakash U, Dabhade VV. Microstructural development during hot forging of Al 7075 powder. J Alloys Compd. 2015;639:123–30. https ://doi.org/10.1016/j.jallc om.2015.03.099.
  • [21] Xiao W, Wang B, Wu Y, Yang X. Constitutive modeling of flow behavior and microstructure evolution of AA7075 in hot tensile deformation. Mater Sci Eng A. 2018;712:704–13. https ://doi.org/10.1016/j.msea.2017.12.028.
  • [22] Yang X, Miura H, Sakai T. Continuous dynamic recrystallization in a superplastic 7075 aluminum alloy. Mater Trans. 2002;43(10):2400–7. https ://doi.org/10.2320/mater trans .43.2400.
  • [23] Engineering ToolBox, “Friction and friction coefficients,” 2004. https ://www.engin eerin gtool box.com/frict ion-coeffi cien ts-d_778.html.
  • [24] J. O. Hallquist, “LS-Dyna®Theory Manual,” 2006. [Online]. Available: www.lstc.com.
  • [25] Armstrong RW, Zerilli FJ. Dislocation mechanics based analysis of material dynamics behavior. J Phys Colloq. 1988;49(C3):C3-529-C3-534. https ://doi.org/10.1051/jphys col:19883 74.
  • [26] Steinberg DJ, Cochran SG, Guinan MW. A constitutive model for metals applicable at high-strain rate. J Appl Phys. 1980;51(3):1498–504. https ://doi.org/10.1063/1.32779 9.
  • [27] R. F. Muraca and J. S. Whittick (1972) “Aluminum alloy 7075 (2nd edn),” in Materials data handbook, San Carlos, California, p. 132.
  • [28] ASM matweb, “Aluminum 7075-T6; 7075-T651,” 2018. http://asm.matwe b.com/searc h/Speci ficMa teria l.asp?bassn um=MA707 5T6.
  • [29] Brar NS, Joshi VS, Harris BW. Constitutive model constants for Al7075-T651 and Al7075-T6. AIP Conf Proc. 2009;1195(1):945–8. https ://doi.org/10.1063/1.32953 00.
  • [30] Zhang DN, Shangguan QQ, Xie CJ, Liu F. A modified Johnson-Cook model of dynamic tensile behaviors for 7075–T6 aluminum alloy. J Alloys Compd. 2015;619:186–94. https ://doi.org/10.1016/j.jallc om.2014.09.002.
  • [31] Dieter GE, Kuhn HA, Semiatin SL (2003). Handbook of workability and process design. ASM International. 2003; p 414. https ://doi.org/10.1361/hwpd2 003p2 32.
  • [32] Ouyang J-H, Liang X-S (2013). High-Temperature Solid Lubricating Materials. Encycl Tribol. 1671–1681. https ://doi.org/10.1007/978-0-387-92897 -5_1236.
  • [33] Li Y, Ramesh KT, Chin ESC. The mechanical response of an A359/SiCp MMC and the A359 aluminum matrix to dynamic shearing deformations. Mater Sci Eng A. 2004;382(1–2):162–70. https ://doi.org/10.1016/j.msea.2004.04.062.
  • [34] Dorogoy A, Rittel D, Godinger A. Modification of the shear-compression specimen for large strain testing. Exp Mech. 2015;55(9):1627–39. https ://doi.org/10.1007/s1134 0-015-0057-6.
  • [35] R.J. Clifton and R.W. Klopp (1986) Metals handbook, 9th edn, ASM International, Metals Park, OH, vol. 8, p. 230.
  • [36] Gupta RK, Mathew C, Ramkumar P. Strain hardening in aero-space alloys. Front Aerosp Eng. 2015;4(1):1–13. https ://doi. org/10.12783 /fae.2015.0401.01.
  • [37] Gourdet S, Montheillet F. A model of continuous dynamic recrystallization. Acta Mater. 2003;51(9):2685–99. https ://doi.org/10.1016/S1359 -6454(03)00078 -8.
  • [38] Van Geertruyden WH, Misiolek WZ, Wang PT. Grain structure evolution in a 6061 aluminum alloy during hot torsion. Mater Sci Eng A. 2006;419(1–2):105–14. https ://doi.org/10.1016/j.msea.2005.12.018.
  • [39] Sun ZC, Zheng LS, Yang H. Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation. Mater Charact. 2014;90:71–80. https ://doi.org/10.1016/j.match ar.2014.01.019.
  • [40] Yue TM, Yan LJ, Chan CP, Dong CF, Man HC, Pang GKH. Excimer laser surface treatment of aluminum alloy AA7075 to improve corrosion resistance. Surf Coatings Technol. 2004;179(2–3):158–64. https ://doi.org/10.1016/S0257 -8972(03)00850 -8.
  • [41] Jacumasso SC, de Martins JP, de Carvalho ALM. Analysis of precipitate density of an aluminium alloy by TEM and AFM. Rev Esc Minas. 2016;69(4):451–7. https ://doi.org/10.1590/0370-44672 01669 0019.
  • [42] Atkinson HV, Burke K, Vaneetveld G. Recrystallization in the semi-solid state in 7075 aluminium alloy. Mater Sci Eng A. 2008;490(1–2):266–76. https ://doi.org/10.1016/j.msea.2008.01.057.
  • [43] Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci. 2014;60(1):130–207. https ://doi.org/10.1016/j.pmats ci.2013.09.002.
  • [44] Jing L, Fu RD, Li YJ, Shi Y, Wang J, Du DX. Physical simulation of microstructural evolution in linear friction welded joints of Ti–6Al–4V alloy. Sci Technol Weld Join. 2015;20(4):286–90. https ://doi.org/10.1179/13621 71815 Y.00000 00007 .
  • [45] Longère P, Dragon A. Dynamic vs. quasi-static shear failure of high strength metallic alloys: experimental issues. Mech Mater. 2015;80:203–18. https ://doi.org/10.1016/j.mechm at.2014.05.001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7833b52-5958-47b4-92b0-f46bc571d91d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.