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Abstract 

In the paper, we propose novel methods for designing and reduction of 

neuro-fuzzy systems without the deterioration of their accuracy. The reduction 

and merging algorithms gradually eliminate inputs, rules, antecedents, and the 

number of discretization points of integrals in the center of area defuzzification 

method. Our algorithms have been tested using well known classification 

benchmark. 
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1 Introduction 

In literature various neuro-fuzzy systems have been developed (see e.g. [7, 

9-11, 13]). They combine the natural language description of fuzzy systems 

and the learning properties of neural networks. Recently several algorithms 

have been proposed to increase interpretability and accuracy and decrease 

complexity of fuzzy rule-based systems. For various methods of designing 

fuzzy rule-based systems the reader is referred to [1-6, 8]. 

In the paper we propose new methods for designing flexible neuro-fuzzy 

systems. The first method, algorithm of consecutive eliminations, is oriented 

to the most possible simplification of the system structure. The second me-

thod, the algorithm of the best local eliminations, is oriented to the most poss-

ible simplification of the system structure with simultaneous increase accura-

cy of the system. The third method, the algorithm of the best global elimina-

tions, is oriented to the searching, across all the parameters of the system, of 

an element whose reduction is the most advantageous from the point of view 

of the accuracy. In subsequent stages of our algorithms we reduce number of 

discretization points, number of inputs, number of rules and number of ante-
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cedents. Moreover, in this paper we present consecutive mergings algorithm, 

oriented on merging of similar input and output fuzzy sets in neuro-fuzzy 

system. The methods are tested on the Wisconsin breast cancer problem. 

2 Description of neuro-fuzzy system 

In this paper we consider multi-input, single-output neuro-fuzzy system 

mapping YX , where n
RX  and RY . 

The fuzzifier performs a mapping from the observed crisp input space 
n
RX  to the fuzzy sets defined in X . The most commonly used fuzzifier is 

the singleton fuzzifier which maps   Xx  nxx ,,1   into a fuzzy set XA  

characterized by the membership function: 
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The fuzzy rule base consists of a collection of N  fuzzy IF-THEN rules in 

the form: 
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where   Xx  nxx ,,1  , Yy , 
k

n

kk
AAA ,,, 21   are fuzzy sets characte-

rized by membership functions  iA
xk

i

 , kB  are fuzzy sets characterized by 

membership functions  ykB
 , Nk ,,1 ,   10,wτ

i,k  , ni ,,1 , 

Nk ,,1 , are weights in antecedents of the rules, whereas   10agr ,wk  , 

Nk ,,1 , are weights in aggregation of the rules. 

The fuzzy inference determines a mapping from the fuzzy sets in the input 

space X  to the fuzzy sets in the output space Y . Each of N  rules (2) deter-

mines a fuzzy set YkB  given by the compositional rule of inference: 

 kkk BAAB   , (3) 
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where 
k

n

kkk AAAA  21
. Fuzzy sets kB , according to the formula (3), 

are characterized by membership functions expressed by the sup-star compo-

sition: 
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where 
T

  can be any operator in the class of t-norms. It is easily seen that for 

a crisp input Xx , i.e. a singleton fuzzifier (1), formula (4) becomes: 
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where  I  is an “engineering implication” (Mamdani approach) or fuzzy 

implication [9-11]. The aggregation operator, applied in order to obtain the 

fuzzy set B  based on fuzzy sets kB , is the t-norm or t-konorm operator, de-

pending on the type of fuzzy implication. In this paper we use the fuzzy im-

plication. 

The defuzzifier performs a mapping from a fuzzy set B  to a crisp point y  

in RY . Discrete form of the COA (centre of area) method is defined by 

following formula: 
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where ry  denotes centres of the membership functions  yrB
 , i.e. for 

Nr ,,1 : 

    yy rr By

r

B


Y
 max . (7) 

For further investigations we choose neuro-fuzzy systems of a logical type 

with an Reichenbach S-implication used in formula (5). Moreover, we incor-

porate weights in antecedents of the rules   10,wτ

i,k  , ni ,,1 , Nk ,,1 , 

and weights in aggregation of the rules   10agr ,wk  , Nk ,,1 . A general 

architecture of neuro-fuzzy system of the logical type includes certainty 
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weights to aggregation of rules agr

rw , Nr ,,1 , and to connectives of ante-

cedents 

kiw ,
, Nk ,,1 , ni ,,1 : 
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and 
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Moreover, the firing strength of rules is given by 
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In this paper, starting with a description (8-11), we develop new methods 

for design of neuro-fuzzy systems. The methods are based on the concept of 

the weighted triangular norms [11]. 

3 Description of neuro-fuzzy system with new formula 

of discretization 

Many neuro-fuzzy architectures developed so far in the literature are based 

on the formula (6) with the assumption that number of terms in 

a corresponding formula (6) is equal to the number of rules .N  In this paper 

we relax that assumption and replace formula (6) and (8) by 
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where 1R , and B

ry , 1, ,r R , are discretization points of the fuzzy set B . 

In this paper we do not equalize number of fuzzy rules (N) with number of 

discretization points (R) and generally it is possible that R > N or R < N or    

R = N. Thanks to that we obtain a more general formula describing neu-

ro-fuzzy systems and we have much more opportunities, adjusting parameters 

N and R, to design and reduce such systems. To our best knowledge such ap-

proach has not yet been studied in the literature. 

4  Algorithms of reduction and merging of neuro-fuzzy systems 

Now we will develop new algorithms of reduction and merging of neu-

ro-fuzzy system (12). The algorithms are based on analysis of weights in an-

tecedents of the rules   10,wτ

i,k  , ni ,,1 , Nk ,,1 , and weights in ag-

gregation of the rules   10agr ,wk  , Nk ,,1 . 

4.1 Algorithm of consecutive eliminations 

The algorithm of consecutive eliminations (CEA) is oriented to the most 

possible simplification of the system structure. Its idea is based on consecu-

tive eliminations of contradicted, non active and unimportant elements of the 

system starting from discretization points, and next inputs, whole rules and, 

finally, antecedents of rules. If a specific reduction, e.g. reduction of 

a concrete input, is acceptable (accuracy of the system is not worse than be-

fore the reduction), then the reduction is accepted, otherwise it is cancelled. 

The flowchart of the algorithm is depicted in Figure 1. 

4.2 Algorithm of the best local eliminations 

The algorithm of the best local eliminations (ABLE) is oriented to the 

most possible simplification of the system structure with simultaneous in-

crease accuracy of the system. Its idea is based on finding within each group 

of parameters (discretization points, inputs, whole rules and antecedents of 

rules) such element that assures the best reduction from the view point of the 

system accuracy. If such an element is found, the reduction is performed and 
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the search is repeated within the same group of parameters, otherwise another 

group of parameters is analyzed. This idea takes into account the fact that 

reduction of the next rule may have better influence on the system accuracy 

than reduction of the current rule. The flowchart of the algorithm is depicted 

in Figure 2. 

 

Figure. 1. Algorithm of consecutive eliminations (CEA) 

4.3 Algorithm of best global eliminations 

The best global eliminations algorithm (ABGE), is oriented to the search-

ing, across all the parameters of the system, of an element whose reduction is 

the most advantageous from the point of view of the accuracy. If there is such 

an element, its reduction is performed and the search is repeated, if not, then 

the reduction algorithm is stopped. This idea takes into account the fact that if 

e.g. an element of the linguistic model causes the biggest mistakes in the sys-

tem's performance, then the reduction should be started from that element, 

temporary ignoring elements with less adverse impact on the system. The 

flowchart of the algorithm is depicted in Figure 3. 
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Figure 2. Algorithm of the best local eliminations (ABLE) 

The flowcharts in Figures 1-3 comprises 4-parts. First, we determine perfor-

mance of the initial system (before the reduction process); for example, in 

a case of the classification we determine a percentage of mistakes of the sys-

tem. The weights   10,wxi  , ni ,,1  , are calculated using 





N

k

ki

x

i w
N

w
1

,

1 

. (13) 

In subsequent stages we reduce number of discretization points, number of 

inputs, number of rules and number of antecedents. 
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Figure 3. Algorithm of the best global eliminations (ABGE) 

4.4 Consecutive mergings algorithm 

The consecutive mergings algorithm (CMA) is initialized by the perfor-

mance determination (number of correctly classified samples) of system (12) 

before merging. Next, we compare all combinations of input fuzzy sets cor-

responding to particular input features. The comparison is based on the simi-

larity measure 
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where .  denotes the cardinality of a fuzzy set, 1
k

iA  i 2
k

iA , ni ,1,=  , 

Nk ,1,=1  , Nk ,1,=2  , are fuzzy sets described by Gaussian membership 
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functions. Their centers are located in points A

kix
1

,
 i A

kix
2

,
, and widths are 

denoted by A

ki
1

,  i A

ki
2

, . 

 

Figure 4. Consecutive mergings algorithm (CMA) 

For each pair of input fuzzy sets we determine the value of similarity 

measure. If that value exceeds the threshold 
mins  then the input fuzzy sets are 

merged. More precisely, Gaussian fuzzy sets 1
k

iA  and 2
k

iA  are replaced by 

fuzzy set 
k

iA , which is also Gaussian with the center and width given by 
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The importance of the antecedent 
k

iA  being a result of merging antecedents 

1
k

iA  and 2
k

iA  is described by 
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After each merging, a simplified neuro-fuzzy system is trained by a single 

epoch and then tested. Testing allows for evaluation of the influence of merg-

ing on accuracy of the simplified system. If merging does not worsen the 

accuracy then the simplified system replaces the previous one. Otherwise, 

merging is canceled and the initial system is restored. In a similar way we 

merge the output fuzzy sets 
k

iB , Nk ,1,=  . The only difference is that the 

centers and widths of merged fuzzy sets are given by 

1 2=
2

B B

k kB

k

y y
y


 (18) 

and 

1 2= .
2

B B

k kB

k
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5 Simulation results 

The neuro-fuzzy system (12) is simulated on the Wisconsin breast cancer 

problem [12]. In our experiments we apply system (12) with 12 different 

combinations of number of rules ( ,41,= N ) and number of discretization 

points ( ,42,= R ). We assume that: 

- Learning of neuro-fuzzy system (12) is based on the cross-validation pro-

cedure 10CV and the momentum back propagation algorithm with 

,0.25= ,0.10= and 2000 epochs. 

- Reduction of neuro-fuzzy system (12) is based on the CEA algorithm, 

ABLE algorithm, and ABGE algorithm. 

- Merging of similar input and output fuzzy sets in neuro-fuzzy system (12) 

is based on the CMA algorithm with 0.5=mins . 

 

The Wisconsin breast cancer data contains 699 instances (of which 16 

instances have a single missing attribute) and each instance is described by 

nine attributes (clump thickness, uniformity of cell size, uniformity of cell 

shape, marginal adhesion, single epithelial cell size, bare nuclei, bland 
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chromatin, normal nucleoli, mitoses). We removed those 16 instances and 

used the remaining 683 instances. Out of 683 data samples, 444 cases 

represent benign breast cancer and 239 cases describe malignant breast 

cancer. The problem is to classify whether a new case is a benign (class 1) or 

malignant (class 2) type of cancer. 

The experimental results for the Wisconsin breast cancer problem 

aredepicted in Table 2 (the best improvement of the system accuracy is 

indicated in bold), and Figure 5. In Table 2 we show the percentage of 

mistakes in the learning and testing sequences before and after reduction 

(reduction and merging). In Figure 5.a we show degree of parameter number 

reduction [% ], in Figure 5.b degree of learning time reduction [ % ], in Figure 

5.c percentage of neuro-fuzzy systems having a particular input (attribute) 

after the reduction process, in Figure 5.d percentage of inputs (attributes) 

corresponding to a particular neuro-fuzzy system after the reduction process. 

 

 

Figure 5. Experimental results for Wisconsin breast cancer problem 
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Analyzing Table 2 and Figure 5, we come to the following conclusions: 

- Accuracy of the system after reduction (reduction and merging) is not 

worse as before reduction. Moreover, in many cases accuracy after the re-

duction was higher. The removal of system antecedents and or rules caus-

ing bad performance may have been the cause of this result (see Table 2). 

- Increasing the number of discretization points resulted in a significant in-

crease of the accuracy of system (12). A great advantage of our method is 

that it is possible to increase accuracy without loosing interpretability (see 

Table 2). 

- The reduction of system (12) resulted in a decrease of parameters and 

weights which were the subject of training; from little to as much as 60% 

(see Figure 5.a). Consequently, it shortened learning time from little to 

70% (see Figure 5.b). 

- The reduction eliminated from few to up to 70% inputs which did not in-

fluence the system accuracy (see Figure 5.d). At the same time we see that 

some inputs were never reduced (see Figure 5.c). 

- The reduction resulted in significant improvement of the knowledge trans-

parency in the final system. 

Table 2. Accuracy [%] of the system (12) before and after reduction and merging 

for Wisconsin breast cancer problem 

N Type of the system 
R 

2 3 4 

1 

System before reduction 2.96 3.76 2.41 2.46 2.17 2.31 

System reduced (CEA+CMA) 2.91 3.76 2.40 2.46 2.15 2.31 

System reduced (ABLE+CMA) 2.88 3.62 2.35 2.17 2.09 2.17 

System reduced (ABGE+CMA) 2.89 3.47 2.33 2.17 2.12 2.17 

2 

System before reduction 1.75 2.02 1.77 1.88 1.74 1.88 

System reduced (CEA+CMA) 1.74 2.02 1.77 1.88 1.72 1.88 

System reduced (ABLE+CMA) 1.67 1.73 1.70 1.73 1.69 1.73 

System reduced (ABGE+CMA) 1.72 1.74 1.72 1.73 1.66 1.73 

3 

System before reduction 1.64 2.17 1.56 1.88 1.33 1.73 

System reduced (CEA+CMA) 1.62 2.17 1.54 1.88 1.32 1.73 

System reduced (ABLE+CMA) 1.59 2.02 1.53 1.73 1.30 1.73 

System reduced (ABGE+CMA) 1.56 2.02 1.49 1.73 1.27 1.73 
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4 

System before reduction 1.36 1.88 1.17 1.73 1.07 1.59 

System reduced (CEA+CMA) 1.36 1.88 1.17 1.73 1.07 1.59 

System reduced (ABLE+CMA) 1.33 1.88 1.14 1.73 1.06 1.59 

System reduced (ABGE+CMA) 1.32 1.88 1.12 1.73 1.06 1.45 

6 Final remarks 

In the paper we described new methods for designing and reduction of 

neuro-fuzzy systems. In simulations we reduced the number of discretization 

points, the number of inputs, the number of rules and the number of antece-

dents. Moreover, we automatically detected and merged similar input and 

output fuzzy sets. From simulations it follows that the reduction process of 

neuro-fuzzy structures based on adjustable weighted triangular norms do not 

worsen the performance of these structures. Our methods allows to decrease 

the number of parameters in neuro-fuzzy structures and consequently the 

learning time. 
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