PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The role of mineral matter in the concentration of phosphorus in bituminous coal seams from the Lublin Formation in the Lublin Coal Basin in Poland

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Rola substancji mineralnej w koncentrowaniu fosforu w pokładach węgla kamiennego z formacji Lublina w Lubelskim Zagłębiu Węglowym w Polsce
Języki publikacji
EN
Abstrakty
EN
The study included bituminous coal seams (30 samples coal from the Bogdanka and Chełm deposits) of the Lublin Formation, the most coal-bearing strata in the best developed and recognized in terms of mining parts of the Lublin Coal Basin in Poland. High phosphorus concentrations in coal of the Lublin Formation were found (1375 g/Mg) as well as P2O5 in coal ash (2.267 wt%). The phosphorus contents in coal and coal ash from the 385 and 391 coal seams in the area of the Lubelski Coal Bogdanka Mine and in the area of its SE neighbor is the highest (max. 2.644 wt. % in coal and 6.055 wt. % of P2O5 in coal ash). It has been shown that mineral matter effectively affects phosphorus contents in coal and coal ash. At the same time, phosphate minerals (probably apatite and crandallite) present in kaolinite aggregates of tonsteins contain the most of phosphorus and have the greatest impact on the average P content in the 382, 385, 387, and 391. The secondary source of phosphorus in these coal seams and main source of phosphorus in these coal deposits that do not contain mineral matter of pyroclastic origin (378, 389, 394) may be clay minerals, which absorbed phosphorus compounds derived from organic matter released during coalification. Phosphorus-rich ash from the combustion of the Lublin Formation coal tend to be environmentally beneficial to the environment and also useful for improving the soil quality. Due to the low degree of coalification and high content of phosphorus in coal, this coals of little use for coking.
PL
Badaniami objęto pokłady węgla kamiennego (30 próbek ze złoża Bogdanka i złoża Chełm) z formacji Lublina, najbardziej węglonośnej i najlepiej pod względem górniczym rozpoznanej części Lubelskiego Zagłębia Węglowego (LZW). Stwierdzono dużą zawartość fosforu w węglu (1375 g/Mg) i P2O5 w popiele węgla (2,267 % wag.). Zawartość fosforu w węglu i w popiele węgla z pokładu 385 i 391 w rejonie kopalni Lubelski Węgiel Bogdanka i w obszarze z nią sąsiadującym od południowo-wschodniej strony jest najwyższa (max. 2,644% w węglu i 6,055% P2O5 w popiele węgla). Wykazano decydujący wpływ materii mineralnej na zawartość fosforu w węglu z formacji Lublina i w popiele węgla. Przy czym minerały fosforanowe (prawdopodobnie apatyt i crandallit), obecne w agregatach kaolinitu w tonsteinach, zawierają najwięcej fosforu i mają największy wpływ na średnią zawartość fosforu w węglu z pokładów 382, 385, 387 i 391. Drugorzędnym źródłem fosforu w węglu wymienionych pokładów oraz głównym źródłem fosforu w węglu z pokładów niezawierających materii mineralnej pochodzenia piroklastycznego (378, 389, 394) są prawdopodobnie minerały ilaste, które zaabsorbowały związki fosforu pochodzące z materii organicznej, uwolnione w czasie uwęglania substancji roślinnej. Bogate w fosfor popioły pochodzące ze spalania węgla z formacji Lublina wydają się być ekologicznie korzystne dla środowiska i jednocześnie przydatne do poprawy jakości gleb. Ze względu na niski stopień uwęglenia i dużą zawartość fosforu w węglu, węgiel ten jest mało przydatny do koksowania.
Twórcy
  • University of Silesia in Katowice, Poland
Bibliografia
  • [1] Baioumy, H.M. 2007. Iron-phosphorus relationship in the iron and phosphorite ores of Egypt. Chemie Erde – Geochemistry 67, pp. 229–239.
  • [2] Bojakowska, I. and Pasieczna, A. 2007. Arsenic and antimony in hard and brown coal from Polish deposits. Ochrona Środowiska i Zasobów Naturalnych 31, pp. 522–526 (in Polish).
  • [3] Bossowski, A. 1995. Lower Silesian Coal Basin. Coal deposits [In:] Zdanowski, A. and Żakowa, H. Eds. The Carboniferous system in Poland. Papers of the Polish Geological Institute 148, pp. 173–175.
  • [4] Bouška, V. 1981. Geochemistry of coal. Academia Prague. Czechoslovak Academy of Sciences, pp. 1–259.
  • [5] Cebulak, S. 1983. Determination of geochemical components of coal from the point of view of full utilization and environmental preservation [In:] Bojkowski, K. and Porzycki, K. Eds. Geological problems of coal basins in Poland. Warszawa: Geological Institute, pp. 335–361.
  • [6] Cebulak, S. and Różkowska, A. 1983. Correlate coal seams in the central coal region, Lublin Coal Basin, on the basis of geochemical data. Kwartalnik Geologiczny 27(1), pp. 25–40 (in Polish).
  • [7] Ciećko, Z. et al. 2015 – Ciećko, Z., Żołnowski, A.C., Madej, M., Wasiak, G. and Lisowski, J. 2015. Long-Term Effects of Hard Coal Fly Ash on Selected Soil Properties. Polish Journal of Environmental Studies 24, pp. 1949–1957.
  • [8] Diez, M.A. et al. 2002 – Diez, M.A., Alvarez, R., Barriocanal, C. 2002. Coal for metallurgical coke production: predictions of coke quality and future requirements for cokemaking. International Journal of Coal Geology 50, pp. 389–412.
  • [9] Fleck, H. 1865. The chemical composition and chemical properties of coal [In:] Geinitz, H.B., Fleck, H. and Hartig, E. eds. Die Steinkohlen Deutschlands und anderer Länder Europas. Oldenbourgh R. Verlag, München 2, pp. 1–223 (in German).
  • [10] Gabzdyl, W. 1967. Petrographical characteristics of coking coal from Jastrzębie Mine (ROW). Przegląd Górniczy 23, pp. 377–382 (in Polish).
  • [11] Grundmann, F.W. 1861. Chemical analysis of the hard coal of Upper Silesia. Zeitschrift für das Berg-Hütten und Salinenwesen in dem Preussischen Staate 19, pp. 198–207 (in German).
  • [12] Hajdus et al. 1981 – Hajdus, D., Łoziński, J. and Steczko, K. 1981. Selected issues of laboratory tests of ash and slag by products of coal gasification process. Koks Smoła Gaz 26, pp. 243–247 (in Polish).
  • [13] Jensch, E. 1886. About the metal content of Upper Silesian hard coal. Chemie Industrie 10, pp. 54–55 (in German).
  • [14] Jęczalik, A. 1970. Geochemistry of uranium in uranium-rich hard coal in Poland. Biuletyn Instutu Geologicznego 224(4), pp. 103–195 (in Polish).
  • [15] Jureczka, J. and Kotas, A. 1995. Coal deposits [In:] Zdanowski, A. and Żakowa, H. Eds. Upper Silesian Coal Basin: The Carboniferous system in Poland 148. The works of Polish Geol. Institute, Warsaw, pp. 164–173.
  • [16] Ketris, M.P. and Yudivich, Ya.E. 2009. Estimations of Clarkes for Carbonaceous biolithes: World avarages for trace element contents in black shales and coals. International Journal of Coal Geology 78, pp. 135–148.
  • [17] Khan et al. 2012 – Khan, K.F., Dar, S.A. and Khan, S.A. 2012. Geochemistry of phosphate bearing sedimentary rocks in parts of Sonrai block, Lalitpur District, Uttar Pradesh, India. Chemie Erde – Geochemistry 72, pp. 117–125.
  • [18] Kokowska-Pawłowska, M. and Nowak, J. 2013. Phosphorus minerale in tonstein: coal seam 405 in Sośnica-Makoszowy coal mine, Upper Silesia, southern Poland. Acta Geologica Polonica 63, pp. 271–281.
  • [19] Kuhl, J. 1961. Chemical-mineral structure of inorganic mineral matter in coal. Kwartalnik Geologiczny 5, pp. 801––813 (in Polish).
  • [20] Kuhl, J. and Aleksa, H. 1967. The autoflotation of coal slurries. Przegląd Górniczy 23, pp. 363–365 (in Polish).
  • [21] Kuhl, J. and Dąbek, H. 1961. The chlorine and phosphorus in the hard coal of Upper Silesia. Przegląd Górniczy 17, pp. 443–446 (in Polish).
  • [22] Kuhl, J. and Widawska-Kuśmierska, J. 1978. Composition of coals mineral substance and its influence on the utilizations processes [In:] Materials of analytical conservatory: Analytical methods for analyzing the carbonaceous resources. Katowice: Polish Academy of Sciences, pp. 45–57 (in Polish).
  • [23] Lewińska-Preis et al. 2009 – Lewińska-Preis, L., Fabiańska, M.J., Ćmiel, S. and Kita, A. 2009. Geochemical distribution of trace elements in Kaffioyra and Longyearbyen coals, Spitsbergen, Norway. International Journal of Coal Geology 80, pp. 211–223.
  • [24] Lipiarski et al. 1993 – Lipiarski, I., Muszyński, M. and Stolecki, J. 1993. Tonstein from the coal seam no. 385 in the Lublin Formation (Lower Westphalian) from the Lublin Coal Basin. Kwartalnik Geologiczny 37, pp. 537–564.
  • [25] Mahony et al. 1981 – Mahony, B., Moulston, I. and Wilkinson, H.C. 1981. Sudy of the relationship between the phosphorus content of coal and coke. Fuel 60, pp. 355–358.
  • [26] Marcisz, M. 2014. Phosphorus content in deposits of Zofiówka Monocline (SW part of the Upper Silesian Coal Basin). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 30, pp. 67–83 (in Polish).
  • [27] Marczak, M. 1985. Genesis and regularities of the elements occurrence in the Chełm Coal Deposit at Coal Basin of Lublin. Prace Naukowe Uniwersytetu Śląskiego 748, pp. 1–109 (in Polish).
  • [28] Marczak, M. and Lewińska, L. 1982. Molybdenum in hard coal of Chełm deposits, Lublin Coal Basin. Prace Naukowe Uniwersytetu Śląskiego, Geologia 6, pp. 22–32 (in Polish).
  • [29] Marczak, M. and Parzentny, H. 1985. Geochemical and ecological evaluation of Pb-enriched coals from the Chełm deposits. Przegląd Geologiczny 33, pp. 680–683.
  • [30] Marczak, M.and Parzentny, H. 1989. Concentration of cadmium as a criterion in ecological evaluation of coals from the Chełm deposits, Lublin Coal Basin. Przegląd Geologiczny 37, pp. 272–275 (in Polish).
  • [31] Michalik, A. and Bronny, M. 2001. Quality parameters of coke fulfilling the requirements of blast furnace operators and the physico-chemical properties of the available coal base. Karbo 2, pp. 53–56 (in Polish).
  • [32] Mielecki et al. 1963 – Mielecki, T., Chruściel, Z., Grayner, J., Karkosz, R. and Szulakowski, W. 1963. Research on the possibility of improving the quality of the national small coal energy. Prace Głównego Instytutu Górnictwa w Katowicach seria B, komunikat 331 (in Polish).
  • [33] Morga, R. 2007. Structure of variability of phosphorus content in exploited seams of bituminous coal in the Pniówek Mine. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 23, pp. 29–48 (in Polish).
  • [34] Muszyński, M. and Wyszomirski, P. 1998. New occurrences of the crandallite group minerals in sedimentary rocks of Poland. Mineralogia Polonica 29, pp. 19–27.
  • [35] Olkuski et al. 2010 – Olkuski, T., Ozga-Blaschke, U. and Stala-Szlugaj, K. 2010. Occurrence of phosphorus in hard coal. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 26, pp. 23–35 (in Polish).
  • [36] Parzentny, H. 1994. Lead distribution in coal and coaly shales in the Upper Silesian Coal Basin. Kwartalnik Geologiczny 38, pp. 43–58.
  • [37] Parzentny, H. 2009. Silver, Tin and volframium in the Lublin Formation coal (westphal B) in the Lublin Coal Basin. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 25, pp. 147–167 (in Polish).
  • [38] Patric, W.H. and Khalid, R.A. 1974. Phosphate Release and Sorption by Soils and Sediments: Effect of Aerobic and Anaerobic Conditions. Science 186, pp. 53–55.
  • [39] Pendias, H. 1964. Geochemical research of coal from Wałbrzych and Biały Kamień Member of Wałbrzych Basin. Kwartalnik Geologiczny 8, pp. 769–788 (in Polish).
  • [40] Pendias, H. 1966. Geochemical research of coal from Żacler seam in Wałbrzych Basin. Kwartalnik Geologiczny 10, pp. 296–314 (in Polish).
  • [41] Porzycki, J. and Zdanowski, A. 1995. Coal deposits, Lublin Coal Basin and Soudheastern Poland (Lublin Carboniferous Basin) [In:] Zdanowski, A. and Żakowa H. Eds. The carboniferous system in Poland. Papers of the Polish Geological Institute 148, pp. 102–109 and 159–164.
  • [42] Rao, P.D. and Walsh, D.E. 1999. Influence of environments of coal deposition on phosphorous accumulation in a high latitude, northen Alaska, coal seam. International Journal of Coal Geology 38, pp. 261–284.
  • [43] Róg, L. 2005. Natural radioactivity of hard coal and density fractions of different petrographic and chemical structure. Research Reports Mining and Environment 3, pp. 81–101 (in Polish).
  • [44] Różkowska, A. 1993. Subordinate and trace elements in the deep-seated productive Carboniferous of the Upper Silesian Coal Basin. Przegląd Geologiczny 41, pp. 780–785 (in Polish).
  • [45] Różkowska, A. and Parzentny, H. 1990. The contents of phosphorus in the Black coals from the Upper Silesian Coal Basin. Kwartalnik Geologiczny 34, pp. 611–622 (in Polish).
  • [46] Sakurovs et al. 2007 – Sakurovs, R., French, D. and Grigore, M. 2007. Quantification of mineral matter in commercial cokes and their parent coals. International Journal of Coal Geology 72, pp. 81–88.
  • [47] Seshadri et al. 2013 – Seshadri, B., Bolan, N., Choppala, G. and Naidu, R. 2013. Differential effect of coal combustion products on the bioavailability of phosphorus between inorganic and organic nutrient sources. Journal of Hazardous Materials 261, pp. 817–825.
  • [48] Stamatakis, W.G. 2004. Phosphate deposits of Neogene age in Greece. Mineralogy, geochemistry and genetic implications. Chemie Erde – Geochemistry 64, pp. 329–350.
  • [49] Staniek, L. 1985. The report on phosphorus and beryllium in the Lublins coal. Zeszyty Naukowe Politechniki Śląskiej, seria Górnictwo 132, pp. 87–98 (in Polish).
  • [50] Valentim et al. 2016 – Valentim, B., Flores, D., Guedes, A., Guimarães, R., Shreya, N., Paul, B. and Ward, C.R. 2016. Notes on the occurrence of phosphate mineral relics and spheres (phosphospheres) in coal and biomass fly ash. International Journal of Coal Geology 154–155, pp. 43–56.
  • [51] Vasconcelos, L. 1999. The petrographic composition of world coals. Statistical results obtained from a literature survey with reference to coal type (maceral composition). International Journal of Coal Geology 40, pp. 27–58.
  • [52] Ward, C.R. 2002. Analysis and significance of mineral matter in coal seams. International Journal of Coal Geology 50, pp. 135–168.
  • [53] Ward et al. 1996 – Ward, C.R., Corcoran, J.F., Saxby, H.W. and Read, H.W. 1996. Occurrence of phosphorus minerals in Australian coal seams. International Journal of Coal Geology 30, pp. 185–210.
  • [54] Widawska-Kuśmierska, J. 1975. Occerrence of gallium in coal fractions of different specyfic weight. Bulletin de L’Academie Polonaise des Sciences, Serie Science de la Terre 23, pp. 89–95.
  • [55] Widawska-Kuśmierska, J. 1981. The presence of trace elements in the Polish hard coal. Przegląd Górniczy 37, pp. 455–459 (in Polish).
  • [56] Wnękowska, L. and Czubek, S. 1951. Determination of phosphorus in hard coal. Prace GIG w Katowicach 83, pp. 1–12 (in Polish).
  • [57] Yudovich et al. 1985 – Yudovich, Ya.E., Ketris, M.P. and Merc, A.W. 1985. Trace elements in coals. Leningrad: Izdatielstvo “Nauka”, pp. 1–239 (in Russian).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f77fdbc6-1e65-425f-a312-faa72c022d4b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.