PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Gyrotron Technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a microwave vacuum tube called gyrotron. Its applications, construction and principle of operation are briefly described. It is also discussed the issue of an appropriate electron beam generation and formation.
Rocznik
Tom
Strony
68--76
Opis fizyczny
Bibliogr. 65 poz., rys.
Twórcy
  • Terahertz Technology Center, Wrocław University of Technology, Wrocław, Poland
  • Terahertz Technology Center, Wrocław University of Technology, Wrocław, Poland
  • Terahertz Technology Center, Wrocław University of Technology, Wrocław, Poland
  • Terahertz Technology Center, Wrocław University of Technology, Wrocław, Poland
Bibliografia
  • [1] B. N. Basu, Electromagnetic Theory and Applications in Beam-Wave Electronics. Singapore: World Scientifc Publishing Co., 1996.
  • [2] A. W. H. Beck, Space Charge Waves and Slow Electromagnetic Waves. New York: Pergamon, 1958.
  • [3] R. G. E. Hutter, Beam and Wave Electronics in Microwave Tubes. Princeton: D. Van Nostrand, 1960.
  • [4] G. D. Sims and I. M. Stephenson, Microwave Tubes and Semiconductor Devices. London: Blackie and Son, 1963.
  • [5] M. Chodorow anf C. Susskind, Fundamentals of Microwave Electronics. New York: McGraw Hill, 1964.
  • [6] J. W. Gewartowski and H. A. Watson, Principles of Electron Tubes. New Jersey: D. Van Nostrand, 1965.
  • [7] R. E. Collin, Foundations for Microwave Engineering. New York: McGraw Hill, 1966.
  • [8] S. Y. Liao, Microwave Devices and Circuits. Englewood Cliffs: Printice-Hall, 1985.
  • [9] A. S. Gilmour Jr, Microwave Tubes. Boston: Artech House, 1986. [10] S. Y. Liao, Microwave Electron Tubes. New Jersey: Prentice-Hall, 1988.
  • 10] S. Y. Liao, Microwave Electron Tubes. New Jersey: Prentice-Hall, 1988.
  • [11] R. G. Carter, Electromagnetic Waves, Microwave Components and Devices. London: Chapman and Hall, 1990.
  • [12] L. Sivan, Microwave Tube Transmitters. London: Chapman and Hall, 1994.
  • [13] T. G. van de Roer, Microwave Electronic Devices. London: Chapman and Hall, 1994.
  • [14] E. F. Nicol, B. J. Mangus, and M. K. De Pano, “TWTA versus SSPA: A new look at boeing fleet on-orbit reliability data and comparison factors”, in Proc. Vacuum Electron. Conf. 2006, Monterey, CA, USA, 2006, pp. 61–62.
  • [15] C. J. Edgcombe, Gyrotron Oscillators: Their Principles and Practice. London: Taylor and Francis, 1993.
  • [16] G. S. Nusinovich, Introduction to the Physics of Gyrotrons. Baltimore: Johns Hopkins University Press, 2004.
  • [17] M. V. Kartikeyan, E. Borie, and M. Thumm, Gyrotrons High-Power Microwave and Millimeter Wave Technology. Germany, Springer, 2004.
  • [18] V. S. Bajaj et al., “250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR”, J. Magn. Reson., vol. 189, no. 2, pp. 251–279, 2007.
  • [19] J. M. Baird, “Survey of fast wave tube developments”, in Proc. Electron Devices Meeting Technical Digest, Washington, USA, 1979, pp. 156–163.
  • [20] R. S. Symons and H. R. Jory, “Cyclotron resonance devices”, Adv. Electron. Electron Phys., vol. 55, pp. 1–75, 1986.
  • [21] R. S. Symons, “Tubes still vital after all these years”, IEEE Spectr., vol. 35, pp. 52–63, 1998.
  • [22] H. Steyskal, “Microwave tubes 1920–1990: A review of ideas and progress”, IETE Rev., vol. 9, pp. 81–85, 1992.
  • [23] V. A. Flyagin, A. V. Gaponov, I. Petelin, and V. K. Yulpatov, “The gyrotron”, IEEE Trans. Microw. Theory Tech., vol. 25, no. 6, pp. 514–521, 1977.
  • [24] R. Q. Twiss, “Radiation transfer and the possibility of negative absorption in radio astronomy”, Aust. J. Phys., vol. 11, pp. 567–579, 1958.
  • [25] A. V. Gaponov, “Interaction of irrectilinear electron flows with electromagnetic waves in waveguides”, Izv. VUZov Radiofiz., vol. 2, pp. 450–462, 1959.
  • [26] G. S. Nusinovich, E. Jerby, “Guest editorial”, IEEE Trans. Plasma Sci., vol. 27, no. 2, pp. 287–293, 1999.
  • [27] A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, “The induced radiation of excited classical oscillators and its use in high frequency electronics”, Radiophys. Quantum Electron., vol. 10, no. 9–10, pp. 794–813, 1967.
  • [28] V. L. Granatstein, M. Herndon, R. K. Parker, and P. Sprangle, “Coherent synchrotron radiation from an intense relativistic electron beam”, IEEE J. Quantum Electron., vol. QE-10, no. 9, p. 651, 1974.
  • [29] V. L. Granatstein et al., “Microwave amplification with an intense relativistic electron beam”, J. Appl. Phys., vol. 46, no. 9, pp. 3800–3805, 1975.
  • [30] D. V. Kisel, G. S. Korablev, V. G. Pavelyev, M. I. Petelin, and S. H. E. Tsimring, “An experimental study of a gyrotron operating at the second harmonic of the cyclotron frequency, with optimized distribution of the high frequency field”, Radio Eng. Electron. Phys., vol. 19, pp. 95–100, 1974.
  • [31] Yu. V. Bykov and A. L. Goldenberg, “Influence of resonator profile on the maximum power of a cyclotron resonance maser”, Radiophys. Quantum Electron., vol. 18, no. 7, pp. 791–792, 1975.
  • [32] Yu. V. Bykov et al., “An experimental investigation of a gyrotron with whispering-gallery modes”, Izv. VUZov Radiofiz., vol. 18, pp. 1544–1547, 1975.
  • [33] L. V. Nikolayev and M. M. Ofitserov, “A gyrotron with a pulsed magnetic field”, Radio Eng. Electron. Phys., vol. 19, pp. 139–140, 1974.
  • [34] N. I. Zaytsev, T. B. Pankratova, M. I. Petelin, and V. A. Flyagin, “Millimeter- and submillimeter wave gyrotrons”, Radio Eng. Electron. Phys., vol. 19, pp. 103–107, 1974.
  • [35] N. Vlasov, L. I. Zagryadskaya, and M. I. Petelin, “Transformation of a whispering gallery mode propagating in a circular waveguide, into a beam of waves”, Radio Eng. Electron. Phys., vol. 12, no. 10, pp. 14–17, 1975.
  • [36] M. Thumm, “History, presence and future of gyrotrons”, in Proc. IEEE Int. Vacuum Electron. Conf. IVEC-2009, Rome, Italy, 2009, pp. 37–40.
  • [37] “Wrocław Teraherz Team” [Online]. Available: http://www.thz.pwr.wroc.pl
  • [38] K. Yujong, “Applications of coherent terahertz light source and possibility at Indiana University”, Workshop on ICS and High Intensity Accelerators, Bloomington, USA, 2010.
  • [39] “GlobalSecurity.org” [Online]. Available: http://www.globalsecurity.org/military/systems/ground/v-mads.htm
  • [40] “Death Ray Turns Warm and Fuzzy, Strategypage”, Oct. 6, 2012 [Online]. Available: http://pl.wikipedia.org.wiki/Active Denial Systems
  • [41] “New Device Unveiled Intended to Stop or Lessen Inmate Assaults”, L. A. County Sheriff, Aug. 20, 2010.
  • [42] A. A. Tolkachev, B. A. Levitan, G. K. Solovjev, V. V. Veytsel, and V. E. Farber, “A megawatt power millimeter-wave phased-array radar”, IEEE Aerosp. Electron. Syst. Mag., vol. 15, no. 7l, pp. 2–31, 2000.
  • [43] B. G. Danly et al., “Development and testing of a high-average power, 94-GHz gyroklystron”, IEEE Trans. Plasma Sci., vol. 28, no. 3, pp. 713–726, 2000.
  • [44] A. V. Gaponov-Grekhov and V. L. Granatstein, Eds., Application of High Power Microwaves. Boston: Artech House, 1994.
  • [45] H. J. Liebe, “MPM-an atmospheric millimeter-wave propagation model”, Int. J. Infrared Millimeter Waves, vol. 10, pp. 631–650, 1989.
  • [46] R. M. Lhermitte, “Small cumuli observed with a 3 mm wavelength doppler radar”, Geophys. Res. Lett., vol. 14, no. 7, pp. 707–710, 1987.
  • [47] W. M. Manheimer, “On the possibility of high power gyrotrons for super range resolution radar and atmospheric sensing”, Int. J. Electron., vol. 72, pp. 1165–1189, 1992.
  • [48] Y. Yang, M. Mandehgar, and D. R. Grischkowsky, “Understanding THz pulse propagation in the atmosphere, terahertz science and technology”, IEEE Trans., vol. 2, no. 4, pp. 406–415, 2012.
  • [49] K. Chang, M. A. Pollock, M. K. Skrehot, G. Dickey, and J. Suddath, “System feasibility study of a microwave/millimeter-wave radar for space debris tracking”, Int. J. Infrar. Millim. Waves, 1988.
  • [50] M. Lucente et al., “An innovative multimode millimeter wave radar for moon remote sensing” in Proc. IEEE Aerosp. Conf., Big Sky, USA, 2009, pp. 1–8.
  • [51] J. F. Federici et al., “THz imaging and sensing for security applications-explosives, weapons and drugs”, Semiconductor Sci. Technol., vol. 20, no. 7, pp. 266–280, 2005.
  • [52] K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints”, Opt. Express, vol. 11, pp. 2549–2554, 2003.
  • [53] G. S. Nusinovich et al., “Development of THz gyrotrons with pulse solenoids for detecting concealed radioactive materials”, in Proc. 35th Int. Conf. Infrar. Millim. Terahertz Waves IRMMW-THz 2010, Rome, Italy, 2010, pp. 1–2.
  • [54] S. Sabchevski and T. Idehara, “Development and applications of high-frequency gyrotrons in FIR FU”, FIR Center Rep., Oct. 2011.
  • [55] S. Sabchevski, T. Idehara, S. Ishiyama, N. Miyoshi, and T. Tatsukawa, “A dual-beam irradiation facility for a novel hybrid cancer therapy”, Tech. Rep., Jun 2012.
  • [56] A. S. Kesar et al., “Design of a magnetron Injection Gun for a 670 GHz, 300 kW gyrotron, IEEE Trans. Plasma Sci., vol. 39, no. 12, pp. 3337–3344, 2011.
  • [57] L. Barret, “High Power 95 GHz Gyro-Devices with Permanent or Conventional Solenoid Magnets, Mountain Technology” [Online]. Available: http://2008.www.virtualaquisitionshowcase.com/document/1249/briefing
  • [58] M. Thumm, “State-of-the-art of high power gyro-devices and free electron masers update 2010”, Scientific Rep. FZKA 7575, Forschungszentrum Karlsruhe, Karlsruhe, Germany, 2010.
  • [59] J. M. Baird and W. Lawson, “Magnetron injection gun (MIG) design for gyrotron applications”, Int. J. Electron., vol. 61, pp. 953–96, 1986.
  • [60] S. Kern, “Numerische Simulation der Gyrotron-Wechselwirkung in koaxialen Resonatoren”, Scientific Rep. FZKA 5837, Forschungszentrum Karlsruhe, Nov. 1996.
  • [61] W. Lawson, H. Ranghunathan, M. Esteban, Space-Charge Limited Magnetron Injection Gus for High-Power Gyrotrons, IEEE Trans. Plasma Sci. 35,3, pp. 1236-1241, 2004.
  • [62] S. Vlasov and I. M. Orlova, “Quasi-optical transformer which transforms the waves in a waveguide having a circular cross section into a highly-directionalwave beam”, Izv.VUZov. Radiofiz, vol. 15, pp. 1913–1918, 1974.
  • [63] S. Vlasov, L. I. Zagryadskaya, and M. I. Petelin, “Transformation of a whispering gallery mode, propagating in a circular waveguide into a beam of waves”, Radiotekhnika i Elektronika, vol. 20, pp. 2026–2030, 1975.
  • [64] R. L. Ives, “3rd harmonic W-Band Permanent Magnet Gyrotron”, Calabazas Creek Research Inc., San Mateo 2009 [Online]. Available: http://www.virtualaquisitionshowcase.com/document/1158/briefing
  • [65] A.W. Cross et al., “A W-band Gyro-BWO with a helical waveguide”, in Proc. 15th Int. Conf. on Teraherz Electr., Cardiff, UK, 2007, pp. 581–582.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7737779-dca2-4777-ac85-324526be6370
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.