Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper the effect of soldering technique and thermal shock test were investigated on SAC 305 solder joints, produced by two different solder method. The solder joints were subjected to different cycle numbers up to 5000 thermal shock tests with two different thermal profiles of –30/+110°C and –40/+125°C. Microstructural properties of the tested joints were examined with the focus on intermetallic layer thickness and crack formation/propagation. Thickness of the scallop shaped Cu6Sn5 intermetallic layer was increased with increasing cycle number for both THRS and multiwave joints, but the thickening was more effective for the THRS joints. Cracks typically formed at the solder alloy/PTH barrel and the solder alloy/pin interfaces and propagated along grain boundaries and precipitations of intermetallic compound.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
925--930
Opis fizyczny
Bibliogr. 26 poz., fot., rys.
Twórcy
autor
- University of Miskolc, Faculty of Materials Science and Engineering, Institute of Physical Metallurgy, Metal Forming and Nanotechnology, Hungary
autor
- University of Miskolc, Faculty of Materials Science and Engineering, Institute of Physical Metallurgy, Metal Forming and Nanotechnology, Hungary
autor
- University of Miskolc, Faculty of Materials Science and Engineering, Institute of Physical Metallurgy, Metal Forming and Nanotechnology, Hungary
autor
- University of Miskolc, Faculty of Materials Science and Engineering, Institute of Physical Metallurgy, Metal Forming and Nanotechnology, Hungary
Bibliografia
- [1] H. Tanaka, Y. Aoki, S. Yamamoto, ESPEC Technology Report 3, 25-29 (1997).
- [2] Y. Ding, C. Q. Wang, Y. H. Tian, ICEPT2003 Proc.
- [3] D. R. Frear, L. N. Ramanathan, J-W. Jang, N. L. Owens, Proc. 46th IEEE, 450-454 (2008).
- [4] P. Lauro, S. K. Kang, W. K. Choi, D. Y. Shih, J. of Elect. Mat., 1432-1440 (2003).
- [5] S. Terashima, T. Kobayashi, M. Tanaka, Sci. Technol. Weld. Join. 732-738 (2008).
- [6] T. T. Mattila, M. Mueller, M. Paulasto-Krockel, K-J. Wolter, Proc. 3rd IEEE-ESTC,1-8 (2010).
- [7] F. A. Stam, E. Davitt, Microel. Reliab. 41, 1815-1822 (2001).
- [8] M. N. Collins, E. Dalton, J. Punch, J. of Alloys and Comp. 688, 164-170 (2016).
- [9] X. Hui, L. Xiaoyan, Y. Yongchang, L. Na, S. Yaowu, Rare Met. Mat. and Eng. 42, 2, February (2013).
- [10] Y. Ding, R. Tian, X. Wang C. Hang, F. Yua, L. Zhou, X. Meng, Y. Tian, Microel. Reliab. 55, 2396-2402 (2015).
- [11] J.W.C. de Vries, M. Y. Jansen, W. D. van Driel, Microel. Reliab. 47, 444-449 (2007).
- [12] D. A. Shnawah, M.F.M. Sabri, I. A. Badruddin, Microel. Reliab. 52, 90-99 (2012).
- [13] J. J. Sundelina, S. T. Nurmi, T. K. Lepisto, E. O. Ristolainen, Mat. Sci. and Eng. A 420, 55-62 (2006).
- [14] L. Snugovsky, P. Snugovsky, P. P. Perovic, J. W. Rutter, Mat. Sci. and Tech. 21, 1, 61-68 (2005).
- [15] T. Laurila, T. Mattila, V. Vuorinen, J. Karppinen, J. Lia, M. Sippola, J. K. Kivilahti, Microel. Reliab. 47, 1135-1144 (2007).
- [16] J. Han, F. Guo, J. P. Liu, J. of Alloys and Comp. 704, 574-584 (2017).
- [17] J. Han, F. Guo, J. P. Liu, J. of Alloys and Comp. 698, 706-713 (2017).
- [18] J. Li, H. Xu, T. T. Mattila, J. K. Kivilahti, T. Laurila, M. Paulasto-Kröckel, Comp. Mat. Sci. 50, 690-697 (2010).
- [19] J. J. Sundelina, S. T. Nurmi, T. K. Lepisto, Mat. Sci. and Eng. A 474, 201-207, (2008).
- [20] M. Sadiq, R. Pesci, M. Cherkaoui, J. of Elect. Mat. 42, 3 (2013).
- [21] Y. Tian, X. Liu, J. Chow, Y. P. Wu, S. K. Sitaraman, J. of Elect. Mat. 42, 8 (2013).
- [22] A. Molnar, D. Janovszky, I. Kardos, I. Molnar, Z. Gacsi, J. of Elect. Mat. 44, 10 (2015).
- [23] X. Yanghua, X. Xiaoming, L. Chuanyan, J. of Mat. Sci. 41, 8, 2359-2364 (2006).
- [24] C. Guohai, L. Xiaoyan, M. Jusheng, J. of Elect. Mat. 35, 10 (2006).
- [25] D. Shangguan, Lead-Free Solder Interconnect Reliability, ASM International, (2005).
- [26] M. Schaefer, W. Laub, J. M. Sabee, R. A. Fournelle, P. S. Lee, J. of Elect. Mat. 25, 6, pp 992-1003 (1996).
Uwagi
EN
1. The described article was carried out as part of the GINOP-2.3.2-15-2016-00027 "Sustainable operation of the workshop of excellence for the research and development of crystalline and amorphous nanostructured materials” project implemented in the framework of the Szechenyi 2020 program. The realization of this project is supported by the European Union.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f76cd7cf-c4fd-4a7d-8676-acb8a67c48e7