Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The intensive use of insecticides and chemical fertilizers in rice cultivation is a common practice which leads to environmental and health concerns. This study isolated endophytic and rhizospheric bacteria from organic and conventional paddy fields using Aleksandrov medium, to find bacteria which basically having functional capabilities as potassium solubilizers and screening them for further capability as plant growth promoters and insecticide biodegradation agents for supporting rice growth on an Alfisol treated with multivariant insecticides. Consecutive assessments were conducted after isolation, involved (1) in vitro assessment of the functional capabilities and the resistance to insecticide, (2) in vivo assessment for the effect of the selected to the growth of rice seedling on agarose medium treated with multivariant insecticides (chlorpyrifos, chlorantraniliprole, thiamethoxam, and carbofuran), and (3) greenhouse pot experiment to confirm the effect of selected isolates to rice growth on an Alfisol treated with multivariant insecticides. Nine out of 11 isolates with distinct colony morphotypes, demonstrated the capability as plant growth promoters which also resistant to insecticide at the in vitro assessment. It was found that the three isolates of AElC-1, AElO-1, and ARsC-3 showed the consistent higher performance during consecutive assessments. The highest level of chlorpyrifos residue in soil and in plant tissue was indicated in the control (+) treatment, while in the NPK treatment which showed the highest plant biomass, indicated the lowest chlorpyrifos residue in plant tissue, but the second high level of chlorpyrifos residue in soil after the control (+). The treatment of 3 superior isolates demonstrated the range of chlorpyrifos residue in plant tissue was 0.098–0.101 mg/kg or higher than that in the NPK treatment but lower than that in the control (+), while in soil the residue at the range 0.132–0.135 mg/kg which was lower than that in the NPK treatment and in the control (+). The 3 superior isolates demonstrated superior capabilities in suppressing chlorpyrifos which potential to be used as soil and plant protecting agents especially in agricultural environments. Molecular identification by 16S rDNA sequencing revealed AElO-1 as Microbacterium sp., AElC-1 as Caulobacter sp., and ARsC-3 as Sphingomonas trueperi.
Czasopismo
Rocznik
Tom
Strony
309--324
Opis fizyczny
Bibliogr. 70 poz., rys., tab.
Twórcy
autor
- Department of Soil Science, Faculty of Agriculture, Sebelas Maret University, Jl Ir. Sutami No. 36A, Surakarta, Indonesia
autor
- Undergraduate Program of Soil Science, Faculty of Agriculture, Sebelas Maret University, Jl Ir. Sutami No. 36A, Surakarta, Indonesia
autor
- Department of Plant Protection, Faculty of Agriculture, Sebelas Maret University, Jl Ir. Sutami No. 36A, Surakarta, Indonesia
autor
- Department of Soil Science, Faculty of Agriculture, Sebelas Maret University, Jl Ir. Sutami No. 36A, Surakarta, Indonesia
Bibliografia
- 1. Ahmad, S., Ahmad, H. W., & Bhatt, P. (2022). Microbial adaptation and impact into the pesticide’s degradation. Archives of Microbiology, 204(5). https://doi.org/10.1007/s00203-022-02899-6
- 2. Ahumada, G. D., Gómez-Álvarez, E. M., Dell’Acqua, M., Bertani, I., Venturi, V., Perata, P., & Pucciariello, C. (2022). Bacterial endophytes contribute to rice seedling establishment under submergence. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.908349
- 3. Ali, M., Kazmi, A. A., & Ahmed, N. (2014). Study on effects of temperature, moisture and pH in degradation and degradation kinetics of aldrin, endosulfan, lindane pesticides during full-scale continuous rotary drum composting. Chemosphere, 102, 68–75. https://doi.org/10.1016/j.chemosphere.2013.12.022
- 4. Aziz, H., Wang, X., Murtaza, G., Ashar, A., Hussain, S., Abid, M., Murtaza, B., Saleem, M. H., Fiaz, S., & Ali, S. (2021). Evaluation of compost and biochar to mitigate chlorpyrifos pollution in soil and their effect on soil enzyme dynamics. Sustainability (Switzerland), 13(17). https://doi.org/10.3390/su13179695
- 5. Bhatt, P., Huang, Y., Rene, E. R., Kumar, A. J., & Chen, S. (2020). Mechanism of allethrin biodegradation by a newly isolated Sphingomonas trueperi strain CW3 from wastewater sludge. Bioresource Technology, 305. https://doi.org/10.1016/j.biortech.2020.123074
- 6. Chandra, S., Askari, K., & Kumari, M. (2018). Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. Journal of Genetic Engineering and Biotechnology, 16(2), 581–586. https://doi.org/10.1016/j.jgeb.2018.09.001
- 7. Charaslertrangsi, T., Arunrat, N., Sereenonchai, S., & Wongkamhang, P. R. (2024). Comparison of microbial diversity and metabolic activities in organic and conventional rice farms in Thailand. Microbiology Spectrum, 12(8). https://doi.org/10.1128/spectrum.03071-23
- 8. Cheng, Y., Narayanan, M., Shi, X., Chen, X., Li, Z., & Ma, Y. (2023). Phosphate-solubilizing bacteria: Their agroecological function and optimistic application for enhancing agro-productivity. In Science of the Total Environment 901. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2023.166468
- 9. Conde-Avila, V., Peña, C., Pérez-Armendáriz, B., Loera, O., Martínez Valenzuela, C., Leyva Morales, J. B., Jesús Bastidas Bastidas, P. de, Salgado-Lugo, H., & Ortega Martínez, L. D. (2021). Growth, respiratory activity and chlorpyrifos biodegradation in cultures of Azotobacter vinelandii ATCC 12837. AMB Express, 11(1). https://doi.org/10.1186/s13568-021-01339-w
- 10. Devi, R., Kaur, T., Kour, D., Yadav, A. N., & Suman, A. (2022). Potential applications of mineral solubilizing rhizospheric and nitrogen fixing endophytic bacteria as microbial consortium for the growth promotion of chilli (Capsicum annum L.). Biologia, 77(10), 2933–2943. https://doi.org/10.1007/s11756-022-01127-2
- 11. Dong, L., Li, S., Lian, W. H., Wei, Q. C., Mohamad, O. A. A., Hozzein, W. N., Ahmed, I., & Li, W. J. (2022). Sphingomonas arenae sp. nov., isolated from desert soil. International Journal of Systematic and Evolutionary Microbiology, 72(1). https://doi.org/10.1099/ijsem.0.005195
- 12. Edelmann, H. G. (2022). Plant root development: is the classical theory for auxin-regulated root growth false? Protoplasma, 259(3), 823–832. https://doi.org/10.1007/s00709-021-01697-z
- 13. Farhan, M., Ahmad, M., Kanwal, A., Butt, Z. A., Khan, Q. F., Raza, S. A., Qayyum, H., & Wahid, A. (2021). Biodegradation of chlorpyrifos using isolates from contaminated agricultural soil, its kinetic studies. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-88264-x
- 14. Faridy, N., Torabi, E., Pourbabaee, A. A., Osdaghi, E., & Talebi, K. (2024). Efficacy of novel bacterial consortia in degrading fipronil and thiobencarb in paddy soil: a survey for community structure and metabolic pathways. Frontiers in Microbiology, 15(May). https://doi.org/10.3389/fmicb.2024.1366951
- 15. Fatema, K., Mahmud, N. U., Gupta, D. R., Siddiqui, M. N., Sakif, T. I., Sarker, A., Sharpe, A. G., & Islam, T. (2024). Enhancing rice growth and yield with weed endophytic bacteria Alcaligenes faecalis and Metabacillus indicus under reduced chemical fertilization. PLoS ONE, 19(5 May). https://doi.org/10.1371/journal.pone.0296547
- 16. Fatimah, Aula, N., Salsabila, S., Ramly, Z. A., Rose, S. Y., Surtiningsih, T., & Nurhariyati, T. (2023). Exploration of phosphate solubilizing bacteria from mangrove soil of Lamongan, East Java, Indonesia. Biodiversitas, 24(2), 1272–1278. https://doi.org/10.13057/biodiv/d240269
- 17. Feng, G. Da, Wang, Y. H., Zhang, X. J., Chen, W. Di, Zhang, J., Xiong, X., & Zhu, H. H. (2019). Sphingomonas lenta sp. Nov., a slowly growing bacterium isolated from an abandoned lead–zinc mine. International Journal of Systematic and Evolutionary Microbiology, 69(8), 2214–2219. https://doi.org/10.1099/ijsem.0.003427
- 18. Feng, F., Li, Y., Ge, J., Chen, J., Jiang, W., He, S., Liu, X., & Yu, X. (2017). Degradation of chlorpyrifos by an endophytic bacterium of the Sphingomonas genus (strain HJY) isolated from Chinese chives (Allium tuberosum ). Journal of Environmental Science and Health, Part B, 52(10), 736–744. https://doi.org/10.1080/03601234.2017.1356675
- 19. Garcıa, K., Bustos-Dıaz, E. D., Corona-Gomez, J. A., Ramos-Aboites, H. E., Selem-Mojica, N., Cruz-Morales, P., Perez-Farrera, M. A., Barona-Gomez, F., & Cibrian-Jaramillo, A. (2018). Cycad coralloid roots contain bacterial communities including cyanobacteria and Caulobacter spp. That encode niche-specific biosynthetic gene clusters. Genome Biology and Evolution, 11(1), 319–334. https://doi.org/10.1093/gbe/evy266
- 20. Ibrahim, M. S., & Ikhajiagbe, B. (2021). The growth response of rice (Oryza sativa L. var. FARO 44) in vitro after inoculation with bacterial isolates from a typical ferruginous ultisol. Bulletin of the National Research Centre, 45(1). https://doi.org/10.1186/s42269-021-00528-8
- 21. Jain, D., Kaur, G., Bhojiya, A. A., Chauhan, S., Khandelwal, S. K., Meena, R. H., Rajpurohit, D., & Mohanty, S. R. (2021). Phenetic characterization of nitrogen fixing azotobacter from rhizospheric soil of Southern Rajasthan. Journal of Pure and Applied Microbiology, 15(1), 428–436. https://doi.org/10.22207/JPAM.15.1.40
- 22. Jena, R., Mukherjee, A. K., Khandual, A., & Swain, H. (2024). Mechanism of betterment towards growth and induction of defense in rice (Oryza sativa L.) by biopriming with bacterial endophytes isolated from wild rice. Microbial Pathogenesis, 197. https://doi.org/10.1016/j.micpath.2024.106966
- 23. Jung, S. yoon, Kim, H. S., Moon, W. ki, & Hong, E. M. (2024). Comparison and analysis of soil microbial communities in organic and conventional paddy fields by farming season. Environmental Research, 249. https://doi.org/10.1016/j.envres.2024.118341
- 24. Kaur, S., Kumar, V., Chawla, M., Cavallo, L., Poater, A., & Upadhyay, N. (2017). Pesticides curbing soil fertility: Effect of complexation of free metal ions. Frontiers in Chemistry, 5(JUL). https://doi.org/10.3389/fchem.2017.00043
- 25. Kebede, G., Tafese, T., Abda, E. M., Kamaraj, M., & Assefa, F. (2021). Factors Influencing the Bacterial Bioremediation of Hydrocarbon Contaminants in the Soil: Mechanisms and Impacts. In Journal of Chemistry 2021. Hindawi Limited. https://doi.org/10.1155/2021/9823362
- 26. Kumar, G., Lal, S., Soni, S. K., Maurya, S. K., Shukla, P. K., Chaudhary, P., Bhattacherjee, A. K., & Garg, N. (2022). Mechanism and kinetics of chlorpyrifos co-metabolism by using environment restoring microbes isolated from rhizosphere of horticultural crops under subtropics. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.891870
- 27. Lamilla, C., Schalchli, H., Briceño, G., Leiva, B., Donoso-Piñol, P., Barrientos, L., Rocha, V. A. L., Freire, D. M. G., & Diez, M. C. (2021). A pesticide biopurification system: A source of biosurfactant-producing bacteria with environmental biotechnology applications. Agronomy, 11(4). https://doi.org/10.3390/agronomy11040624
- 28. Lee, H., Chaudhary, D. K., & Kim, D. U. (2024). Sphingomonas flavescens sp. nov., isolated from soil. Archives of Microbiology, 206(3). https://doi.org/10.1007/s00203-024-03851-6
- 29. Li, T., Lang, S., Li, L., Zhang, S., Pu, Y., Wang, G., Xu, X., Li, Y., & Jia, Y. (2021). Potassium Availability in Tea Plantations of Different Ages Grown on Alfisols: Content, Dynamics, Release, and Composition of Potassium-Bearing Minerals. Journal and Soil Science and Plant Nutrition, 21, 1252–1262. https://doi.org/10.1007/s42729-021-00437-9/Published
- 30. Lin, G. Y., Lin, C. Y., Chang, S. J., & Lin, W. Y. (2020). The dynamics of endophytic bacterial community structure in rice roots under different field management systems. Agronomy, 10(11). https://doi.org/10.3390/agronomy10111623
- 31. Liu, C., Lin, H., Li, B., Dong, Y., Yin, T., & Chen, X. (2021). Endophyte inoculation redistributed bioavailable Cd and nutrient in soil aggregates and enhanced Cd accumulation in Phytolacca acinosa. Journal of Hazardous Materials, 416. https://doi.org/10.1016/j.jhazmat.2021.125952
- 32. Liu, L., Yuan, T., Zhang, J. Y., Tang, G. X., Lü, H., Zhao, H. M., Li, H., Li, Y. W., Mo, C. H., Tan, Z. Y., & Cai, Q. Y. (2022). Diversity of endophytic bacteria in wild rice (Oryza meridionalis) and potential for promoting plant growth and degrading phthalates. Science of the Total Environment, 806. https://doi.org/10.1016/j.scitotenv.2021.150310
- 33. Lu, P., Liu, H. ming, & Liu, A. Min. (2019). Biodegradation of dicofol by Microbacterium sp. D-2 isolated from pesticide-contaminated agricultural soil. Applied Biological Chemistry, 62(1). https://doi.org/10.1186/s13765-019-0480-y
- 34. Luo, D., Langendries, S., Mendez, S. G., De Ryck, J., Liu, D., Beirinckx, S., Willems, A., Russinova, E., Debode, J., & Goormachtig, S. (2019). Plant growth promotion driven by a novel caulobacter strain. Molecular Plant-Microbe Interactions, 32(9), 1162–1174. https://doi.org/10.1094/MPMI-12-18-0347-R
- 35. Ma, C., Hua, J., Li, H., Zhang, J., & Luo, S. (2022). Inoculation with carbofuran-degrading rhizobacteria promotes maize growth through production of IAA and regulation of the release of plant-specialized metabolites. Chemosphere, 307. https://doi.org/10.1016/j.chemosphere.2022.136027
- 36. Mamy, L., Pesce, S., Sanchez, W., Aviron, S., Bedos, C., Berny, P., Bertrand, C., Betoulle, S., Charles, S., Chaumot, A., Coeurdassier, M., Coutellec, M.-A., Crouzet, O., Faburé, J., Fritsch, C., Gonzalez, P., Hedde, M., Leboulanger, C., Margoum, C., … Leenhardt, S. (2023). Impacts of neonicotinoids on biodiversity: a critical review. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-31032-3
- 37. Mazoyon, C., Catterou, M., Alahmad, A., Mongelard, G., Guénin, S., Sarazin, V., Dubois, F., & Duclercq, J. (2023). Sphingomonas sediminicola Dae20 Is a Highly Promising Beneficial Bacteria for Crop Biostimulation Due to Its Positive Effects on Plant Growth and Development. Microorganisms, 11(8), 2061. https://doi.org/10.3390/microorganisms11082061
- 38. Mohamed, A. E., Nessim, M. G., Abou-el-seoud, I. I., Darwish, K. M., & Shamseldin, A. (2019). Isolation and selection of highly effective phosphate solubilizing bacterial strains to promote wheat growth in Egyptian calcareous soils. Bulletin of the National Research Centre, 43(1). https://doi.org/10.1186/s42269-019-0212-9
- 39. Muhtari, K., Sailaja, I., Shekhawat, B. K., Kaura, S., & Mehta, S. (2024). Identification of Bacterial Endophytes Isolated from Different Medicinal Plants. International Journal of Biomedical and Clinical Analysis, 4(1), 24–40. https://doi.org/10.61797/ijbca.v4i1.331
- 40. Nasrollahi, M., Pourbabaei, A. A., Etesami, H., & Talebi, K. (2020). Diazinon degradation by bacterial endophytes in rice plant (Oryzia sativa L.): A possible reason for reducing the efficiency of diazinon in the control of the rice stem–borer. Chemosphere, 246. https://doi.org/10.1016/j.chemosphere.2019.125759
- 41. Nawaz, A., Qamar, Z. U., Marghoob, M. U., Imtiaz, M., Imran, A., & Mubeen, F. (2023). Contribution of potassium solubilizing bacteria in improved potassium assimilation and cytosolic K+/Na+ ratio in rice (Oryza sativa L.) under saline-sodic conditions. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1196024
- 42. Norman, J. (1958). Soil Extract in Soil Microbiology1. Canadian Journal of Microbiology, 4(4), 1–8.
- 43. Olaniyan, F. T., Alori, E. T., Adekiya, A. O., Ayorinde, B. B., Daramola, F. Y., Osemwegie, O. O., & Babalola, O. O. (2022). The use of soil microbial potassium solubilizers in potassium nutrient availability in soil and its dynamics. Annals of Microbiology, 72(1). https://doi.org/10.1186/s13213-022-01701-8
- 44. Pang, F., Tao, A., Ayra-Pardo, C., Wang, T., Yu, Z., & Huang, S. (2022). Plant organ- and growth stage-diversity of endophytic bacteria with potential as biofertilisers isolated from wheat (Triticum aestivum L.). BMC Plant Biology, 22(1). https://doi.org/10.1186/s12870-022-03615-8
- 45. Patani, A., Prajapati, D., Ali, D., Kalasariya, H., Yadav, V. K., Tank, J., Bagatharia, S., Joshi, M., & Patel, A. (2023). Evaluation of the growth-inducing efficacy of various Bacillus species on the salt-stressed tomato (Lycopersicon esculentum Mill.). Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1168155
- 46. Prodhan, M. Y., Rahman, M. B., Rahman, A., Akbor, M. A., Ghosh, S., Nahar, M. N. E. N., Simo, Shamsuzzoha, M., Cho, K. M., & Haque, M. A. (2023). Characterization of growth-promoting activities of consortia of chlorpyrifos mineralizing endophytic bacteria naturally harboring in rice plants—a potential bio-stimulant to develop a safe and sustainable agriculture. Microorganisms, 11(7). https://doi.org/10.3390/microorganisms11071821
- 47. Putrie, R. F. W., Aryantha, I. N. P., Iriawati, & Antonius, S. (2020). Diversity of endophytic and rhizosphere bacteria from pineapple (Ananas comosus) plant in semi-arid ecosystem. Biodiversitas, 21(7), 3084–3093. https://doi.org/10.13057/biodiv/d210728
- 48. Rani, L., Thapa, K., Kanojia, N., Sharma, N., Singh, S., Grewal, A. S., Srivastav, A. L., & Kaushal, J. (2021). An extensive review on the consequences of chemical pesticides on human health and environment. In Journal of Cleaner Production. 283. Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.124657
- 49. Saheewala, H., Sanadhya, S., Upadhyay, S. K., Mohanty, S. R., & Jain, D. (2023). Polyphasic characterization of indigenous potassium-solubilizing bacteria and its efficacy studies on maize. Agronomy, 13(7). https://doi.org/10.3390/agronomy13071919
- 50. Shah, S. H., Hussain, M. B., Zahir, Z. A., Haq, T. U., & Matloob, A. (2022). Thermal plasticity and cotton production enhancing attributes of phosphate-solubilizing bacteria from cotton rhizosphere. Journal of Soil Science and Plant Nutrition, 22(3), 3885–3900. https://doi.org/10.1007/s42729-022-00937-2
- 51. Shahid, M., & Khan, M. S. (2022). Tolerance of pesticides and antibiotics among beneficial soil microbes recovered from contaminated rhizosphere of edible crops. Current Research in Microbial Sciences, 3. https://doi.org/10.1016/j.crmicr.2021.100091
- 52. Shahid, M., Zaidi, A., Ehtram, A., & Khan, M. S. (2019a). In vitro investigation to explore the toxicity of different groups of pesticides for an agronomically important rhizosphere isolate Azotobacter vinelandii. Pesticide Biochemistry and Physiology, 157, 33–44. https://doi.org/10.1016/j.pestbp.2019.03.006
- 53. Shahid, M., Zaidi, A., Ehtram, A., & Khan, M. S. (2019b). In vitro investigation to explore the toxicity of different groups of pesticides for an agronomically important rhizosphere isolate Azotobacter vinelandii. Pesticide Biochemistry and Physiology, 157, 33–44. https://doi.org/10.1016/j.pestbp.2019.03.006
- 54. Siddiqi, M. Z., Rajivgandhi, G., Faiq, M., & Im, W. T. (2023). Isolation and Characterization of Sphingomonas telluris, Sphingomonas caseinilyticus Isolated from Wet Land Soil. Current Microbiology, 80(8). https://doi.org/10.1007/s00284-023-03339-4
- 55. Smith, H. H., Idris, O. A., & Maboeta, M. S. (2021). Global Trends of Green Pesticide Research from 1994 to 2019: A Bibliometric Analysis. In Journal of Toxicology 2021. Hindawi Limited. https://doi.org/10.1155/2021/6637516
- 56. Sulistiyani, T., & Meliah, S. (2017). Isolation and Characterization of Nitrogen Fixing Endophytic Bacteria Associated with Sweet Sorghum (Sorghum bicolor). The 1st SATREPS Conference, 110–117. https://www.researchgate.net/publication/321666213
- 57. Sulistiyani, T. R., Meliah, S., Masrukhin, Kusmiati, M., Budiyanto, A., & Muslichah, D. A. (2024). Molecular approach and preliminary screening of culturable free-living rhizobium as plant growth enhancer. Malaysian Journal of Science, 43(2), 20–29. https://doi.org/10.22452/mjs.vol43no2.3
- 58. Sun, F., Ou, Q., Wang, N., Guo, Z. xuan, Ou, Y., Li, N., & Peng, C. (2020). Isolation and identification of potassium-solubilizing bacteria from Mikania micrantha rhizospheric soil and their effect on M. micrantha plants. Global Ecology and Conservation, 23, e01141. https://doi.org/10.1016/j.gecco.2020.e01141
- 59. Sunithakumari, V. S., Menon, R. R., Suresh, G. G., Krishnan, R., & Rameshkumar, N. (2024). Characterization of a novel root-associated diazotrophic rare PGPR taxa, Aquabacter pokkalii sp. nov., isolated from pokkali rice: new insights into the plant-associated lifestyle and brackish adaptation. BMC Genomics, 25(1). https://doi.org/10.1186/s12864-024-10332-z
- 60. Suzuki, K., Takemura, M., Miki, T., Nonaka, M., & Harada, N. (2019). Differences in soil bacterial community compositions in paddy fields under organic and conventional farming conditions. Microbes and Environments, 34(1), 108–111. https://doi.org/10.1264/jsme2.ME18101
- 61. Tam, N. T., Berg, H., & Van Cong, N. (2018). Evaluation of the joint toxicity of chlorpyrifos ethyl and fenobucarb on climbing perch (Anabas testudineus) from rice fields in the Mekong Delta, Vietnam. Environmental Science and Pollution Research, 25(14), 13226–13234. https://doi.org/10.1007/s11356-016-6980-y
- 62. Tian, S., Xu, Y., Zhong, Y., Qiao, Y., Wang, D., Wu, L., Yang, X., Yang, M., & Wu, Z. (2024). Exploring the organic acid secretion pathway and potassium solubilization ability of Pantoea vagans ZHS-1 for enhanced rice growth. Plants, 13(14). https://doi.org/10.3390/plants13141945
- 63. Wu, R. L., He, W., Li, Y. L., Li, Y. Y., Qin, Y. F., Meng, F. Q., Wang, L. G., & Xu, F. L. (2020). Residual concentrations and ecological risks of neonicotinoid insecticides in the soils of tomato and cucumber greenhouses in Shouguang, Shandong Province, East China. Science of the Total Environment, 738. https://doi.org/10.1016/j.scitotenv.2020.140248
- 64. Yaghoubi Khanghahi, M., Pirdashti, H., Rahimian, H., Nematzadeh, G., & Ghajar Sepanlou, M. (2018). Potassium solubilising bacteria (KSB) isolated from rice paddy soil: from isolation, identification to K use efficiency. Symbiosis, 76(1), 13–23. https://doi.org/10.1007/s13199-017-0533-0
- 65. Yang, H., Hu, Z., Xiao, R., Liu, Z. dong, Zhang, M., Li, Y. L., Wu, S. dong, & Fu, Z. jiao. (2024). Identification and performance of endophytic actinobacteria Ahn65 with functions of growth promotion and disease resistance for rice. Physiological and Molecular Plant Pathology, 134. https://doi.org/10.1016/j.pmpp.2024.102418
- 66. Yaseen, T., Ali, K., Munsif, F., Rab, A., Ahmad, M., Israr, M., & Khan Baraich, A. (2016). Influence of arbuscular mycorrhizal fungi, rhizobium inoculation and rock phosphate on growth and quality of lentil. In Pak. J. Bot 48(5).
- 67. Yu, B., Chen, Z., Lu, X., Huang, Y., Zhou, Y., Zhang, Q., Wang, D., & Li, J. (2020). Effects on soil microbial community after exposure to neonicotinoid insecticides thiamethoxam and dinotefuran. Science of the Total Environment, 725. https://doi.org/10.1016/j.scitotenv.2020.138328
- 68. Zhang, H., Zhang, Z., Song, J., Mei, J., Fang, H., & Gui, W. (2021). Reduced bacterial network complexity in agricultural soils after application of the neonicotinoid insecticide thiamethoxam. Environmental Pollution, 274. https://doi.org/10.1016/j.envpol.2021.116540
- 69. Zhang, Xuzhi, Gao, Y., Zhao, C., Wang, L., Wen, S., Shi, B., Zhu, L., Wang, J., Kim, Y. M., & Wang, J. (2024). Rhizosphere bacteria G-H27 significantly promoted the degradation of chlorpyrifos and fosthiazate. Science of the Total Environment, 917. https://doi.org/10.1016/j.scitotenv.2023.169838
- 70. Zou, X., Xiao, X., Zhou, H., Chen, F., Zeng, J., Wang, W., Feng, G., & Huang, X. (2018). Effects of soil acidification on the toxicity of organophosphorus pesticide on Eisenia fetida and its mechanism. Journal of Hazardous Materials, 359, 365–372.https://doi.org/10.1016/j.jhazmat.2018.04.036
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f761d46e-ed68-4f79-94bd-efe63167a445
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.