PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of Electric Permittivity of Threads in Woven Fabric

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the article, a new method for the estimation of electric permittivity of threads (filaments) was presented. The proposed recursive method is based on the results of computer simulation of 3D model of transmission stripline. This model contains a model of flat fabric having threads, with which electric permittivity should be determined. The described procedure uses the method proposed by Barry to obtain permittivity of flat fabric from the so-called s parameters of the simulated stripline. In the proposed method, the permittivity of the flat fabric obtained from simulation is compared with the measured value of permittivity of real flat fabric in order to estimate the threads’ permittivity. This comparison is needed to obtain the electric permittivity of threads forming this fabric. The article also presents examples of the obtained values of threads’ permittivity and discussion about the accuracy of the method. The presented method will be useful in situations where the knowledge of permittivity of threads is necessary in the conducted research.
Rocznik
Strony
80--85
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • Institute of Architecture of Textiles, Lodz University of Technology Zeromskiego 116, 90-924 Lodz, Poland
Bibliografia
  • [1] Roshni S. B. et al. (2017). Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric, Smart Mater. Struct., 26, 1 - 8.
  • [2] Leśnikowski J. (2015). New Kind of Textile Transmission Line with an Impedance of 50 Ohms. Fibres & Textiles in Eastern Europe, 23(2), 51-54.
  • [3] Leśnikowski J. (2011). Textile Transmission Lines in the Modern Textronic Clothes, FIBRES & TEXTILES in Eastern Europe, 19(6), 89-93.
  • [4] Zhou G. et al. (2017). Highly Sensitive Wearable Textile-Based Humidity Sensor Made of High-Strength, Single-Walled Carbon Nanotube/Poly(vinyl alcohol) Filaments, ACS Appl. Mater. Interfaces,9(5), 4788–4797.
  • [5] Kubiak P., Leśnikowski J. Gniotek K. (2016). Textile Sweat Sensor for Underwear Convenience Measurement. Fibres & Textiles in Eastern Europe, 24(6),151-155.
  • [6] Kurczewska A., Leśnikowski J. (2008). Variable-thermoinsulation garments with a microprocessor temperature controller, International Journal of Occupational Safety and Ergonomics, 14 (1), 77-87.
  • [7] Zhang H., Zeng B.Q., Ao L., & Zhang Z. (2012). A novel dual-loop coupler for one-port Cylindrical cavity permittivity measurement, Progress in Electromagnetics Research, 127, 537-552.
  • [8] Bappadittya R., Bhatterchya A.K., & Choudhury S. K. (2013, December). Characterization of Textile Substrate to Design a Textile Antenna, Paper presented at the International Conference on Microwave and Photonics (ICMAP), Dhanbad, India.
  • [9] Leśnikowski J. (2012). Dielectric permittivity measurement methods of textile substrate of textile transmission lines, Electrical Review, 3a, 148-151.
  • [10] Bal K., & Kothari V.K. (2009). Measurement of dielectric properties of textile materials and their applications, Indian Journal of Fibre & Textile Research, 34, 191-199.
  • [11] Kumar A., & Sharma S. (2007). Measurement of dielectric constant and measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies, Progress In Electromagnetics Research, PIER 69, 47–54.
  • [12] Bal K., & Kothari V.K. (2009). Study of dielectric behavior of woven fabric based on two phase models, Journal of Electrostatics, 67, 751-758.
  • [13] ASTM D 150-11. (2011). Standard test methods for a-c loss characteristics and permittivity (dielectric constant) of solid electrical insulation. Retrieved February 02, 2016, from http://www.astm.org/Standards/D150.htm
  • [14] Radmanesh M. (2007). RF & Microwave Design Essentials: Engineering Design and Analysis from DC to Microwaves. Bloomington: Author House.
  • [15] Hiebel M. (2007). Fundamentals of Vector Network Analysis. Munich: Rohde-Schwarz.
  • [16] Ellinger F. (2007). Radio Frequency Integrated Circuits and Technologies. Berlin Heidelberg: Springer.
  • [17] Barry W. (1986). A Broad-Band, Automated, Strip line Technique for the Simultaneous Measurement of Complex Permittivity and Permeability, IEEE Transactions on Microwave Theory and Techniques, MTT34, 1, 80-84.
  • [18] Collin R. E. (1960). Field Theory of Guided Waves. New York: McGraw-Hill, 3, 79-83.
  • [19] Tokarska M., Gniotek K. 2015. Anisotropy of the electrical properties of flat textiles, The Journal of The Textile Institute, 106(1), 9-18.
  • [20] Sheen J. (2007). Amendment of cavity perturbation technique for loss tangent measurement at microwave frequencies, Journal of Applied Physics, 102, 014102-1 - 014102-6.
  • [21] IEC 250:1969, Recommended methods for the determination of the permittivity and dielectric dissipation factor of electrical insulating materials at power, audio and radio frequencies including meter wavelengths. Retrieved February 02, 2016, from https://webstore.iec.ch/publication/1151&preview=1
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f75f9e5a-f19d-4a4e-95b5-99c82f8972be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.