PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Geophysical tools to study the near surface distribution of the tailings in the Smaltjärnen repository, south-central Sweden; a feasibility study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two geophysical field works were conducted during a feasibility study in the Smaltjärnen tailing repository of the abandoned Yxsjöberg mine, located in south-central Sweden. The aim of these studies was to evaluate the applicability of the geophysical methods in tailing characterizations i.e. to (I) identify the approximate level of the underground water table, (II) understand the vertical and lateral distribution of the tailings and (III) image the variations within the internal stratigraphy of the tailings. Ground Penetrating Radar (GPR) data with medium–low-frequency antennas (300, 250 and 100 MHz) and Self-Potential (SP) data using the Streaming Potential Phenomena (SPP) were collected to characterize the top few meters of the subsurface and understand the water flow direction. Results from the mineralogical and geochemical studies of the drill-core samples were incorporated in the study to complement the interpretations of the geophysical data. Three distinct layers had been earlier identified based on the interpretations of the geochemical data which agreed well with the GPR interpretations in this study: (I) oxidized tailing (new), (II), transition zone and (III) old tailing which is located under the water table. The SP data, unexpectedly, indicated that the groundwater flows from the lake i.e. lower altitudes, towards the higher altitudes which probably is related to the uncertainties resulted from 2D data while the actual water flow direction can be best studied in 3D, or, dominant effect from the metal contents. Complementary geophysical studies including a 2D-SP survey and Direct Current (DC) electrical resistivity measurements are suggested to improve the present understanding of the morphology of the site.
Czasopismo
Rocznik
Strony
141--159
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • Department of the Natural Hazards, Norwegian Geotechnical Institute, 3930 Ullevaal Stadion, 0806 Oslo, Norway
  • Division of Geosciences and Environmental Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
Bibliografia
  • 1. ABEM (2010) Instruction Manual, Terrameter SAS 4000/SAS 1000. https://www.guidelinegeo.com/wp-content/uploads/2016/03/Manual_Terrameter.pdf. ABEM printed matter NO 93109. 2010.06.04
  • 2. Atekwana EA, Sauck WA, Werkema DD Jr (2000) Investigations of geoelectrical signatures at a hydrocarbon contaminated site. J Appl Geophys 44:167–180
  • 3. Bérubé AP (2004) Investigating the Streaming Potential Phenomenon Using Electric Measurements and Numerical Modelling with Special Reference to Seepage Monitoring in Embankment Dams. Doctoral Thesis ISSN:1402-1544. Luleå University of Technology, Department of Chemical Engineering and Geosciences, Division of Ore Geology and Applied Geophysics.
  • 4. Bundschuh J, Litter MI, Parvez F, Román-Ross G, Nicolli HB, Jean JS, Liu ChW, López D, Armienta MA, Guilherme L, Gomez A, Cornejo L, Cumbal L, Toujaguez R (2012) One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci Total Environ 429:2–35
  • 5. Cortada U, Martínez J, Rey J, Hidalgo MC, Sandoval S (2017) Assessment of tailings pond seals using geophysical and hydrochemical techniques. Eng Geol 223:59–70. https://doi.org/10.1016/j.enggeo.2017.04.024
  • 6. Duy Thanh L, Jougnot D, Do PV, Ca NX, Hien NT (2020) A physically based model for the streaming potential coupling coefficient in partially saturated porous media. Water 2020(12):1588. https://doi.org/10.3390/w12061588
  • 7. Ganesh M (2006) Monitoring of tailings dams with geophysical methods. Doctoral Thesis, ISSN: 1402–1757, Luleå University of Technology, Department of Chemical Engineering and Geosciences, Division of Ore Geology and Applied Geophysics.
  • 8. Grandjean G, Durand H (1999) Radar Unix: a complete package for GPR data processing. Comput Geosci 25:141–149
  • 9. Guillemoteau J, Bano M, Dujardin J-R (2012) Influence of grain size, shape and compaction on georadar waves: examples of aeolian dunes. Geophys J Int. https://doi.org/10.1111/j.1365-246X.2012.05577.x
  • 10. Hällström L, Alakangas L, Martinsson O (2018) Geochemical characterization of W, Cu and F skarn tailings at Yxsjöberg, Sweden. J Geochem Explor 194:266–279
  • 11. Hällström LP, Alakangas L, Martinsson O (2020a) Scheelite weathering and tungsten (W) mobility in historical oxidic-sulfidic skarn tailings at Yxsjöberg, Sweden. Environ Sci Pollut Res 27:6180–6192. https://doi.org/10.1007/s11356-019-07305-1
  • 12. Hällström LP, Salifu M, Alakangas L, Martinsson O (2020b) The geochemical behaviour of Be and F in historical mine tailings of Yxsjöberg, Sweden, Journal of Geochemical Exploration, Volume 218. ISSN 106610:0375-6742. https://doi.org/10.1016/j.gexplo.2020.106610
  • 13. Hällström LP (2021) Mobility and fate of critical Be, Bi, F and W from historical sulfidic-oxidic skarn tailings: Re-mining as remediation method. PhD Thesis. Luleå University of Technology. ISBN 978-91-7790-730-5.
  • 14. Höglund LO, Jones C, Lindgren M (2004) Förstudie för efterbehandling av sandmagasin i Yxsjöberg. Kemakta AR 2003-23.
  • 15. Hübner H (1971) Molybdenum and tungsten occurrences in Sweden, SGU.
  • 16. Ji K, Kim J, Lee M, Park S, Kwon HJ, Cheong HK, Jang JY, Kim DS, Yu S, Kim YW, Lee KY, Yang SO, Jhung IJ, Yang WH, Paek DH, Hong YC, Choi K (2013) Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environ Pollut 178:322–328. https://doi.org/10.1016/j.envpol.2013.03.031. Epub 2013 Apr 18. PMID: 23603469.
  • 17. Jolyon R, Jolyon K (2000) Mineralogical database—mineral collecting, Localities, Mineral photoes and data. Hudson Institute of Mineralogy. Available at: https://www.mindat.org/loc-3202.html
  • 18. Kondracka M, Stan-Kłeczek I, Sitek S, Ignatiuk D (2021) Evaluation of geophysical methods for characterizing industrial and municipal waste dumps, Waste Management, Volume 125, 2021. ISSN 27-39:0956-1053. https://doi.org/10.1016/j.wasman.2021.02.015
  • 19. Lghoul M, Teixidó T, Peña JA, Hakkou R, Kchikach A, Gué́rin R, Jaffal M, Zouhri L (2012) Electrical and seismic tomography used to image the structure of a tailings pond at the abandoned Kettara Mine, Morocco. Mine Water Environ 31:53–61. https://doi.org/10.1007/s10230-012-0172-x
  • 20. Mäkitalo M (2015) Green Liquor Dregs in Sealing Layers to Prevent the Formation of Acid Mine drainage: From characterization to implementation (ed.). Doctoral Thesis 978-91-7583-388-0 (ISBN) Luleå University of Technology, Department of Chemical Engineering and Geosciences, Division of Ore Geology and Applied Geophysics.
  • 21. Markovaara-Koivisto M, Valjus T,Tarvainen T, Huotari T, Lerssi J, Eklund M (2018) Preliminary volume and concentration estimation of the Aijala tailings pond—Evaluation of geophysical methods, Resources Policy. Elsevier, Amsterdm, vol. 59(C), pp 7–16.
  • 22. Martini R, Caetano T, Santos H, Aranha PR (2015). GPR Application in Disposal Structures of Iron Ore Waste. https://doi.org/10.1190/sbgf2015-042
  • 23. Mollehuara-Canales R, Kozlovskaya E, Lunkka JP, Moisio K, Pedretti D (2021) Non-invasive geophysical imaging and facies analysis in mining tailings, Journal of Applied Geophysics, Volume 192. ISSN 104402:0926-9851. https://doi.org/10.1016/j.jappgeo.2021.104402
  • 24. Mukherjee D, Heggy E, Khan SD (2010) Geoelectrical constraints on radar probing of shallow water-saturated zones within karstified carbonates in semi-arid environments. J Appl Geophys 70:181–191
  • 25. Mulenshi J, Khavari P, Chehreh Chelgani S, Rosenkranz J (2019) Characterization and beneficiation options for Tungsten Recovery from Yxsjöberg Historical Ore Tailings. Processes 7(12):895. https://doi.org/10.3390/pr7120895
  • 26. Mulenshi J, Gilbricht S, Chehreh Chelgani S, Rosenkranz J (2021) Systematic characterization of historical tailings for possible remediation and recovery of critical metals and minerals—The Yxsjöberg case. J Geochemical Exploration, Volume 226, 2021. ISSN 106777:0375-6742. https://doi.org/10.1016/j.gexplo.2021.106777
  • 27. Neto PX, Medeiros WE (2006) A practical approach to correct attenuation effects in GPR data. J Appl Geophys 59:140–151
  • 28. Ohlsson L (1979) Tungsten occurrences in central Sweden. Econ Geol 74(1012–1034):35
  • 29. Placencia-Gómez E, Parviainen A, Hokkanen T, Loukola-Ruskeeniemi K (2010) Integrated geophysical and geochemical study on AMD generation at the Haveri Au-Cu mine tailings, SW Finland. Environ Earth Sci 61 (7):1435–1447.
  • 30. Rothelius E (1957) Swedish Mineral Dressing Mills, Short descriptions and flowsheets. International Mineral Dressing Congress Stockholm, pp 1–9.
  • 31. SGU report, in Swedish (2017) Utvärdering av efterbehandlad gruvverksamhet Kartläggning av kostnader för hantering av gruvavfall och för efterbehandling av gruvverksamhet
  • 32. Takahashi K, Preetz H, Igel J (2011) Soil properties and performance of landmine detection by metal detector and ground-penetrating radar — soil characterisation and its verification by a field test. J Appl Geophys 73:368–377
  • 33. Tavakoli S, Gilbert G, Kydland Lysdahl AO, Frauenfelder R, Schaanning Forsberg C (2021) Geoelectrical properties of saline permafrost soil in the Adventdalen valley of Svalbard (Norway), constrained with in-situ well data. J Appl Geophys 195:104497. https://doi.org/10.1016/j.jappgeo.2021.104497
  • 34. Vanhala H, Räisänen ML, Suppala I, Huotari T, Valjus T, Lehtimäki J (2005) Geophysical characterizing of tailings impoundment—a case from the closed Hammaslahti Cu-Zn mine, eastern Finland. Special Paper Geol Surv Finland 38(2005):49–60
  • 35. Villain L (2014) Reclamation of acid-generating waste rock by in-pit backfilling and sealing. An evaluation of the Kimheden Mine Site, Northern Sweden. Doctoral Thesis ISSN 1402-1544. Luleå University of Technology, Department of Chemical Engineering and Geosciences, Division of Ore Geology and Applied Geophysics.
  • 36. Wang T-P, Chen C-C, Tong L-T, Chang P-Y, Chen Y-C, Dong T-H, Liu H-C, Lin C-P, Yang K-H, Ho C-J, Cheng S-N (2015) Applying FDEM, ERT and GPR at a site with soil contamination: a case study. J Appl Geophys 121:21–30. https://doi.org/10.1016/J.JAPPGEO.2015.07.005
  • 37. Younger PL, Banwart SA, Hedin RS (2002) Mine water: hydrology, pollution, remediation. Kluwer, Dordrecht
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f75ca172-6445-41b8-979d-640e951ee3aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.