Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper analyzes stochastic vibrations of a viscoelastic nanobeam under axial loadings. Based on the higher-order nonlocal strain gradient theory and the Liapunov functional method, bounds of the almost sure asymptotic stability of a nanobeam are obtained as a function of retardation time, variance of the stochastic force, higher-order and lower-order scale coefficients, strain gradient length scale, and intensity of the deterministic component of axial loading. Analytical results from this study are first compared with those obtained from the Monte Carlo simulation. Numerical calculations are performed for the Gaussian and harmonic non-white processes as models of axial forces.
Czasopismo
Rocznik
Tom
Strony
137--153
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- University of Niš, Faculty of Mechanical Engineering, A. Medvedeva 14, 18000 Niš, Serbia
autor
- University of Niš, Faculty of Mechanical Engineering, A. Medvedeva 14, 18000 Niš, Serbia
autor
- University of Niš, Faculty of Mechanical Engineering, A. Medvedeva 14, 18000 Niš, Serbia
Bibliografia
- 1. M. Hosseini, M. Sadeghi-Goughari, S.A. Atashipour, M. Eftekhari, Vibration analysis of single-walled carbon nanotubes conveying nanoflow embedded in a viscoelastic medium using modified nonlocal beam model, Archives of Mechanics, 66, 217–244, 2014.
- 2. Z. Rahimi, G. Rezazadeh, W. Sumelka, X.J. Yang, A study of critical point instability of micro and nano beams under a distributed variable-pressure force in the framework of the inhomogeneous non-linear nonlocal theory, Archives of Mechanics, 69, 413–433, 2017.
- 3. M.F. Oskouie, R. Ansari, H. Rouhi, Bending of Euler–Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach, Acta Mechanica Sinica, 34, 5, 871–882, 2018.
- 4. A.C. Eringen, Nonlocal Continuum Field Theories, Springer, New York, 2002.
- 5. M.S. Atanasov, D. Karličić, P. Kozić, G. Janevski, Thermal effect on free vibration and buckling of a double-microbeam system, Facta Universitatis, Series: Mechanical Engineering, 15, 45–62, 2017.
- 6. J.N. Reddy, Nonlocal theories for bending, buckling and vibrations of beams, Journal of Engineering Science, 45, 288–307, 2007.
- 7. J. Aranda-Ruiz, J. Loya, J. Fernandez-Saez, Bending vibrations of rotating nonuniform nanocantilevers using the eringen nonlocal elasticity theory, Composite Structures, 94, 2990–3001, 2012.
- 8. M. Jamshidi, J. Arghavani, Optimal material tailoring of functionally graded porous beams for buckling and free vibration behaviors, Mechanics Research Communications, 88, 19–24, 2018.
- 9. L. Behera, S. Chakraverty, Static analysis of nanobeams using Rayleigh–Ritz method, Journal of Mechanics of Materials and Structures, 12, 603–616, 2017.
- 10. H. Mobki, M.H. Sadeghi, G. Rezazadeh, M. Fathalilou, Nonlinear behavior of a nanoscale beam considering length scale-parameter, Applied Mathematical Modeling, 38, 1881–1895, 2014.
- 11. R. Pavlović, P. Kozić , S. Mitić, I. Pavlović, Influence of rotatory inertia on dynamic stability of the viscoelastic symmetric cross-ply laminated plates. Mechanics Research Communications, 45, 28–33, 2012.
- 12. I. Pavlović, R. Pavlović, I. Ćirić, D. Karličić, Dynamic stability of nonlocal Voigt-Kelvin viscoelastic rayleigh beam, Applied Mathematical Modeling, 39, 1599–1614, 2015.
- 13. I. Pavlović, R. Pavlović, G. Janevski, Dynamic instability of coupled nanobem system, Meccanica, 51, 1167–1180, 2016.
- 14. I. Pavlović, D. Karličić, R., Pavlović, G. Janevski, I. Ćirić, Stochastic stability of multi-nanobeam system, International Journal of Mechanical Sciences, 109, 88-1052016.
- 15. C.W. Lim, G. Zhang, J.N. Redy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, Journal of Mechanics and Physics of Solids, 78, 298–313, 2015.
- 16. A. Farajpour, Y.M.R. Haeri, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment, Acta Mechanica, 227, 1849–1867, 2016.
- 17. F. Ebrahimi, M.R. Barati, Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects, Acta Mechanica, 228, 1197–1210, 2017.
- 18. F.M. de Sciarra, A nonlocal model with strain-based damage, International Journal of Solids and Structures, 46, 4107–4122, 2009.
- 19. R. Barretta, R. Luciano, F.M. de Sciarra, G. Ruta, Stress-driven nonlocal integral model for Timoshenko elastic nano-beams, European Journal of Mechanics – A/Solids, 72, 275–286, 2018.
- 20. F.M. de Sciarra, Variational formulations and a consistent finite-element procedure for a class of nonlocal elastic continua, International Journal of Solids and Structures, 45, 4184–4202, 2008.
- 21. G. Romano, R. Barretta, M. Diaco, F.M. de Sciarra, Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams, International Journal of Mechanical Sciences, 121, 151–156, 2017.
- 22. R. Barretta, F.M. de Sciarra, Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams, International Journal of Engineering Science, 130, 187–198, 2018.
- 23. L. Li, H. Tang, Y. Hu, The effect of thickness on the mechanics of nanobeams, International Journal of Engineering Science, 123, 81–91, 2018.
- 24. M. Laković, I. Pavlović, M. Banjac, M. Jović, M. Mančić, Numerical computation and prediction of electricity consumption in tobacco industry, Facta Universitatis, Series: Mechanical Engineering, 15, 457–465, 2017.
- 25. R. Pavlović, I. Pavlović, Dynamic stability of timoshenko beams on pasternak viscoelastic foundation, Theoretical and Applied Mechanics, 45, 67–81, 2018.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019.)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f75b0a65-fdce-415d-bed6-58ad4dbc44de