PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ion chromatography as a part of green analytical chemistry

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Chromatografia jonowa jako część zielonej chemii analitycznej
Języki publikacji
EN
Abstrakty
EN
Due to the increased environmental awareness, green chemistry becomes an important element of environmental protection. Unfortunately, it generate specifi c environmental costs, which are related to the use of toxic chemical reagents and waste generation. The most frequently determined analytes include inorganic and organic anions and cations. The methods used so far for their analysis in water, sewage and various other types of samples are increasingly being replaced by ion chromatography methods. This paper presents the most important advantages and limitations of ion chromatography in the context of “green analytical chemistry.” The progress of ion chromatography in gradient and isocratic elution, capillary and multidimensional ion chromatography, as well as miniaturization and methods of sample preparation for analysis, which allow to classify this technique as green analytical chemistry, are described.
PL
Ze względu na zwiększoną świadomość ekologiczną, zielona chemia staje się ważnym elementem ochrony środowiska. Laboratoria na całym świecie przeprowadzają miliony analiz różnych substancji. Niestety generują one określone koszty środowiskowe, co związane jest stosowaniem toksycznych odczynników chemicznych i wytwarzaniem odpadów. Do najczęściej oznaczanych analitów należą aniony i kationy. Dotychczas stosowane metody ich analiz są coraz częściej zastępowane metodami chromatografii jonowej. W pracy przedstawiono najważniejsze zalety i ograniczenia chromatografii jonowej w kontekście „zielonej chemii analitycznej”. Opisano postępy w zakresie elucji gradientowej i izokratycznej, kapilarnej i wielowymiarowej IC, miniaturyzacji i metod przygotowania próbek, które pozwalają na jej zaliczenie do metod zielonej chemii analitycznej.
Rocznik
Strony
3--9
Opis fizyczny
Bibliogr. 50 poz., tab.
Twórcy
  • Institute of Environmental Engineering, Polish Academy of Sciences, Poland
  • Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Bibliografia
  • 1. Anastas, P.T. & Warner, J.C. (1998). Green Chemistry: Theory and Practice, Oxford University Press Inc, New York 1998.
  • 2. Armenta, S., Garrigues, S. & de la Guardia, M. (2008). Green analytical chemistry, TrAC Trends in Analytical Chemistry, 27, 6, pp. 497-511, DOI: 10.1016/j.trac.2008.05.003.
  • 3. Armenta, S., Garrigues, S. & de la Guardia, M. (2015). The role of green extraction techniques in Green Analytical Chemistry, TrAC Trends in Analytical Chemistry, 71, pp. 2-8, DOI: 10.1016/j.trac.2014.12.011.
  • 4. Baram, G.I. (1996). Portable liquid chromatograph for mobile laboratories I. Aims, Journal of Chromatography A, 728, 1-2, pp. 387-399, DOI: 10.1016/0021-9673(95)01271-0.
  • 5. Boring, C.B., Dasgupta, P.K. & Sjögren, A. (1998). Compact, field-portable capillary ion chromatograph, Journal of Chromatography A, 804, 1-2, pp. 45-54, DOI: 10.1016/S0021-9673(98)00139-3.
  • 6. Chen, Y., Edwards, B.L., Dasgupta, P.K. & Srinivasan, K. (2012). pH-and concentration-programmable electrodialytic buffer generator, Analytical chemistry, 84, 1, 59-66, DOI: 10.1021/ac2023734.
  • 7. Chen, Y., Srinivasan, K. & Dasgupta, P.K. (2012). Electrodialytic membrane suppressors for ion chromatography make programmable buffer generators, Analytical chemistry, 84, 1, pp. 67-75, DOI: 10.1021/ac2023712.
  • 8. de la Guardia, M. & Armenta, S. (2011). Origins of green analytical chemistry. In: de la Guardia, M. & Armenta, S. (Eds), Comprehensive Analytical Chemistry (vol. 57), Elsevier Science & Technology, Oxford, pp. 1-23.
  • 9. de la Guardia, M. & Garrigues, S. (2011). An ethical commitment and an economic opportunity. In: de la Guardia, M. & Garrigues, S. (Eds), Challenges in Green Analytical Chemistry, Royal Society of Chemistry, Cambridge, pp. 1-12.
  • 10. De Vos, J., De Pra, M., Desmet, G., Swart, R., Edge, T., Steiner, F. & Eeltink, S. (2015). High-speed isocratic and gradient liquid-chromatography separations at 1500 bar, Journal of Chromatography A, 1409, pp. 138-145, DOI: 10.1016/j.chroma.2015.07.043.
  • 11. Elkin, K.R. (2014). Portable, fully autonomous, ion chromatography system for on-site analyses, Journal of Chromatography A, 1352, pp. 38-45, DOI: 10.1016/j.chroma.2014.05.046.
  • 12. Fa, Y., Yu, Y., Li, F., Du, F., Liang, X. & Liu, H. (2018). Simultaneous detection of anions and cations in mineral water by two-dimensional ion chromatography, Journal of Chromatography A, 1554, pp. 123-127, DOI: 10.1016/j.chroma.2018.04.017.
  • 13. Frenzel, W. & Michalski, R. (2016). Sample preparation techniques for ion chromatography, In: Michalski, R. (Ed.), Application of IC-MS and IC-ICP-MS in Environmental Research, John Wiley & Sons Inc, New York, pp. 210-266.
  • 14. Jandera, P. (2012). Programmed elution in comprehensive two-dimensional liquid chromatography, Journal of Chromatography A, 1255, pp. 112-129, DOI: 10.1016/j.chroma.2012.02.071.
  • 15. Johns, C., Shellie, R.A., Pohl, C.A. & Haddad, P.R. (2009). Two-dimensional ion chromatography using tandem ion-exchange columns with gradient-pulse column switching, Journal of Chromatography A, 1216, 41, pp. 6931-6937, DOI: 10.1016/j.chroma.2009.08.018
  • 16. Kalyakina, O.P. & Dolgonosov, A.M. (2003). Ion-chromatographic determination of fluoride ions in atmospheric precipitates and natural waters, Journal of Analytical Chemistry, 58, 10, pp. 951-953.
  • 17. Kiplagat, I.K., Kubáň, P., Pelcová, P. & Kubáň, V. (2010). Portable, lightweight, low power, ion chromatographic system with open tubular capillary columns, Journal of Chromatography A, 1217, 31, pp. 5116-5123, DOI: 10.1016/j.chroma.2010.06.017.
  • 18. Kuban, P. & Dasgupta, P. K. (2004). Capillary ion chromatography, Journal of separation science, 27, 17-18, pp. 1441-1457, DOI: 10.1002/jssc.200401824.
  • 19. Lim, L.W., Tokunaga, K. & Takeuchi, T. (2014). Development of chemically bonded crown ether stationary phases in capillary ion chromatography, Chromatography, 35, 2, pp. 95-101, DOI: 10.15583/jpchrom.2014.012.
  • 20. Michalski, R. (2006). Ion chromatography as a reference method for determination of inorganic ions in water and wastewater, Critical Reviews in Analytical Chemistry, 36, 2, 107-127, DOI: 10.1080/10408340600713678.
  • 21. Michalski, R. (2009). Applications of ion chromatography for the determination of inorganic cations, Critical Reviews in Analytical Chemistry, 39, 4, pp. 230-250, DOI: 10.1080/10408340903032453.
  • 22. Michalski, R. (2012). Hyphenated methods for speciation analysis, In: Meyers, R.A. (Ed.), Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, John Wiley & Sons Inc., New York, pp. 1-20.
  • 23. Michalski, R. (Ed.). (2016). Application of IC-MS and IC-ICP-MS in environmental research, John Wiley & Sons Inc., New York 2016.
  • 24. Michalski, R. & Łyko, A. (2013). Bromate determination: state of the art, Critical Reviews in Analytical Chemistry, 43, 2, pp. 100-122, DOI: 10.1080/10408347.2012.747792.
  • 25. Michalski, R., Jabłonska, M., Szopa, S. & Łyko, A. (2011). Application of ion chromatography with ICP-MS or MS detection to the determination of selected halides and metal/metalloids species, Critical Reviews in Analytical Chemistry, 41, 2, pp. 133-150, DOI: 10.1080/10408347.2011.559438.
  • 26. Murray, E., Li, Y., Currivan, S.A., Moore, B., Morrin, A., Diamond, D., Macka, M. & Paull, B. (2018). Miniaturized capillary ion chromatograph with UV light‐emitting diode based indirect absorbance detection for anion analysis in potable and environmental waters, Journal of separation science, 41, 16, pp. 3224-3231, DOI: 10.1002/jssc.201800495.
  • 27. Murrihy, J.P., Breadmore, M.C., Tan, A., McEnery, M., Alderman, J., O’Mathuna, C., O’Neill, A.P., O’Brien, P., Avdalovic, N., Haddad, P.R. & Glennon, J.D. (2001). Ion chromatography on-chip, Journal of chromatography A, 924, 1-2, pp. 233-238, DOI: 10.1016/S0021-9673(01)00855-X.
  • 28. Namieśnik, J. (2001). Green analytical chemistry – some remarks, Journal of separation Science, 24, 2, pp. 151-153, DOI: 10.1002/1615-9314(20010201)24:2<151::AID-JSSC151>3.0.CO;2-4.
  • 29. Namieśnik, J., Łukasik, J. & Jamrógiewicz, Z. (2000). Przygotowanie próbek środowiskowych do analiz, WNT, Warszawa 2000. (in Polish)
  • 30. Ng, B.K., Shellie, R.A., Dicinoski, G.W., Bloomfield, C., Liu, Y., Pohl, C.A. & Haddad, P.R. (2011). Methodology for porting retention prediction data from old to new columns and from conventional-scale to miniaturised ion chromatography systems, Journal of Chromatography A, 1218, 32, pp. 5512-5519, DOI: 10.1016/j.chroma.2011.06.050.
  • 31. Paull, B. & Michalski, R. (2019). Ion Chromatography Principles and Applications. In: Worsfold, P., Poole, C., Townshend, A. & Miró, M. (Eds.), Encyclopedia of Analytical Science, Elsevier Health Sciences, London, pp. 178-189.
  • 32. Płotka-Wasylka, J. & Namieśnik, J. (Eds.). (2019). Green Analytical Chemistry: Past, Present and Perspectives, Springer, Singapore 2019.
  • 33. Rahayu, A., Lim, L. W. & Takeuchi, T. (2015). Preparation of a hybrid monolithic stationary phase with allylsulfonate for the rapid and simultaneous separation of cations in capillary ion chromatography, Journal of separation science, 38, 7, pp. 1109-1116, DOI: 10.1002/jssc.201401264.
  • 34. Rokushika, S., Qiu, Z.Y. & Hatano, H. (1983). Micro column ion chromatography with a hollow fibre suppressor, Journal of Chromatography A, 260, pp. 81-87, DOI: 10.1016/0021-9673(83)80009-0.
  • 35. Rong, L., Liu, Z., Ma, M., Liu, J., Xu, Z., Lim, L. W. & Takeuchi, T. (2012). Simultaneous Determination of Inorganic Cations by Capillary Ion Chromatography with a Non-suppressed Contactless Conductivity Detector, Analytical sciences, 28, 4, pp. 367-367, DOI: 10.2116/analsci.28.367.
  • 36. Sedyohutomo, A., Lim, L.W. & Takeuchi, T. (2008). Development of packed-column suppressor system for capillary ion chromatography and its application to environmental waters, Journal of Chromatography A, 1203, 2, pp. 239-242, DOI: 10.1016/j.chroma.2008.07.055.
  • 37. Sedyohutomo, A., Suzuki, H. & Fujimoto, C. (2012). Determination of inorganic anions by capillary ion-exchange chromatography using polyethylenimine-coated octadecyl-bonded phases, Analytical Sciences, 28, 6, pp. 625-629, DOI: 10.2116/analsci.28.625.
  • 38. Shellie, R.A., Tyrrell, É., Pohl, C.A. & Haddad, P.R. (2008). Column selection for comprehensive multidimensional ion chromatography, Journal of separation science, 31, 19, pp. 3287-3296, DOI: 10.1002/jssc.200800286.
  • 39. Slingsby, R. & Kiser, R. (2001). Sample treatment techniques and methodologies for ion chromatography, TrAC Trends in Analytical Chemistry, 20, 6-7, pp. 288-295, DOI: 10.1016/S0165-9936(01)00069-3.
  • 40. Small, H. & Bowman, B. (1998). Ion chromatography: A historical perspective, American laboratory (Fairfield), 30, 21, pp. 56C-62C.
  • 41. Small, H., Stevens, T.S. & Bauman, W.C. (1975). Novel ion exchange chromatographic method using conductometric detection, Analytical Chemistry, 47, 11, pp. 1801-1809, DOI: 10.1021/ac60361a017
  • 42. Strong, D.L., Dasgupta, P.K., Friedman, K. & Stillian, J.R. (1991). Electrodialytic eluent production and gradient generation in ion chromatography, Analytical chemistry, 63, 5, pp. 480-486, DOI: 10.1021/ac00005a019.
  • 43. Takeuchi, T., Oktavia, B. & Lim, L.W. (2009). Poly (ethylene oxide)-bonded stationary phase for capillary ion chromatography, Analytical and bioanalytical chemistry, 393, 4, pp. 1267-1272, DOI: 10.1007/s00216-008-2533-7.
  • 44. Tanaka, K., Ohta, K., Haddad, P.R., Fritz, J.S., Lee, K.P., Hasebe, K., Ieuji, A. & Miyanaga, A. (1999). Acid-rain monitoring in East Asia with a portable-type ion-exclusion-cation-exchange chromatographic analyzer, Journal of chromatography A, 850, 1-2, pp. 311-317, DOI: 10.1016/S0021-9673(99)00286-1.
  • 45. Verrey, D., Louyer, M.V., Thomas, O. & Baurès, E. (2013). Direct determination of trace-level haloacetic acids in drinking water by two-dimensional ion chromatography with suppressed conductivity, Microchemical Journal, 110, pp. 608-613, DOI: 10.1016/j.microc.2013.07.012.
  • 46. Witkiewicz, Z. & Kałużna-Czaplińska, J. (2019). Podstawy chromatografii i technik elektromigracyjnych, PWN, Warszawa 2019. (in Polish)
  • 47. Wouters, S., Bruggink, C., Agroskin, Y., Pohl, C. & Eeltink, S. (2017). Microfluidic membrane suppressor module design and evaluation for capillary ion chromatography, Journal of Chromatography A, 1484, pp. 26-33, DOI: 10.1016/j.chroma.2016.12.078.
  • 48. Yang, B., Zhang, F. & Liang, X. (2009). A simplified ion exchange bead-based KOH electrodialytic generator for capillary ion chromatography, Talanta, 79, 1, pp. 68-71, DOI: 10.1016/j.talanta.2009.03.004.
  • 49. Yang, B., Zhang, F. & Liang, X. (2012). Recent development in capillary ion chromatography technology, Central European Journal of Chemistry, 10, 3, pp. 472-479, DOI: 10.2478/s11532-011-0148-x.
  • 50. Zemann, A.J., Schnell, E., Volgger, D. & Bonn, G.K. (1998). Contactless conductivity detection for capillary electrophoresis, Analytical chemistry, 70, 3, pp. 563-567, DOI: 10.1021/ac9707592.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f759ae1b-305f-42a5-90b9-ac0e742673b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.