PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compaction of Cores Made by Blowing Methods – Model Investigations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of model investigations of the influence of the blowing process selected parameters on the distribution of the compaction of the core made by the blowing method, are presented in the hereby paper. These parameters were: shooting pressure, shooting hole diameter, amount and distribution of deaerating holes. Investigations were performed using the horizontal core box of the cuboidal cavity and the same core box into which inner inserts were introduced. These inserts were dividing the primary volume into three sectors differing in their direction, introduction conditions and the character of the core sand flow. As the compaction measure the apparent sand density was assumed. The density was determined in five measuring points in case of uniform cores, and in three measuring points in case of cores obtained in the core box with three separated sectors. The apparent density of the compacted core sand in the core box cavity was determined on the basis of the measurements of masses and volumes of samples cut-out from the determined core places by means of the measuring probe. Investigations were performed at three values of the working pressure equal 0.4, 0.5 and 0.6MPa for two diameters of the shooting hole: 10 and 20 mm. During tests the core box deaeration, controlled by an activisation of the determined number of deaerating vents placed in the core box, was also subjected to changes.
Rocznik
Strony
191--197
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-059 Kraków, Poland
Bibliografia
  • [1] Bakhtiyarov, S.I. & Overfelt, R.A. (2003). CFD modeling and experimental study of resin-bonded sand/air two-phase flow in sand core making process. Powder Technology. 133, 68-78.
  • [2] Aksjonow, P.N. (1965). Selected issues from the theory of casting machines. Katowice: "Śląsk" Publishing House. (in Polish).
  • [3] Stachowicz, M., Mażulis, J., Granat, K. & Janus, A. (2014). Influence of molding and core sands matrix on the effectiveness of the microwaves absorption. Metalurgija. 53(3), 317-319.
  • [4] Dańko, R. & Jamrozowicz, Ł. (2017). Density distribution and resin migration investigations in samples of sand core made by blowing method. Journal of Casting & Materials Engineering. 1(3), 70-73.
  • [5] Dańko, J., Zych, J. & Dańko, R. (2009). Diagnostic methods of technological properties and casting cores quality. Archives of Metallurgy and Materials. 54(2), 281-392.
  • [6] Fayomi, O., Ajayi, O. & Popoola, A. (2011). Suitability of local binder compositional variation on silica sand for foundry core making. International Journal of Physical Sciences. 6(8), 1940-1946.
  • [7] Fedoryszyn, A. & Dańko, R. (2013). Examinations of parameters influencing the outflow of two phase air-sand stream from machine chamber and core box filling in shooting process. Archives of Metallurgy and Materials. 58(3), 903-906.
  • [8] Lefebvre, D., Mackenbrock, A., Vidal, V., Pavan, V. & Haigh, M. (2004). Development and Use of Simulation in the Design of Blown-Cores and Moulds. Proceedings of 66WFC. 6-9 September (pp.211-222). Istambul, Turkey.
  • [9] Schneider, M., Heisser, C., Serghini, A. & Kessler, A. (2008). Experimental investigation, physical modeling and simulation of core production processes. Transactions of the American Foundry Society. 116, 419-432.
  • [10] Ni, Chang-jiang, Lu, Gao-chun, Jing, Tao, et al (2017). Influence of core sand properties on flow dynamics of core shooting process based on experiment and multiphase simulation. China Foundry. 14(2), 121-127.
  • [11] Ni, Chang-jiang, Lu, Gao-chun, Zhang, Qing-dong, et al. (2016). Influence of core box vents distribution on flow dynamics of core shooting process based on experiment and numerical simulation. China Foundry. 13(1), 22-29.
  • [12] Reek, R. (2005). Optimierung des Füll-und Hartungsvorgangs von Giessereisandkernen durch 3-D Simulation der Strömungs-vorgänge. Giessereiforschung. 57(3), 2-14.
  • [13] Vidal, V., Beauvais, P., Leger-Delcourt, E., Hossemand, J.S. & Sadon, P. (2005). Pressure distribution during core production in core blowing machines. Fonderie Fondeur D’Aujourd’Hui. 241, 12-20.
  • [14] Walker, M., Palczenski, S., Snider, D. & Williams, K. (2002). Modeling Sand Core Blowing: Simulation’s Next Challenge. Modern Casting. April, 41-43.
  • [15] Winartomo, B., Vroomen, U., Polaczek, A.B., et al. (2013). Multiphase modelling of core shooting process. International Journal of Cast Metals Research. 18(1), 13-20.
  • [16] Wu, Junjiao Cui, Yi, & Li, Wenzhen (2001). A Study on Numerical Simulation of Core-Shooting Process. Journal of Material Science and Technology. 17(6), 625-628.
  • [17] Darabi, P., Pougatch, K., Salcudean, M., et al. (2011). DEM investigations of fluidized beds in the presence of liquid coating. Powder Technology. 214(3), 365-374.
  • [18] INNOTECH -K2/IN2/69/183139/NCBR/12 NCBiR Project (2012). Construction, execution and start-up of the production of a new generation of universal shooters for the production of cores from sands bonded with the latest, environmentally friendly adhesive systems.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f75425a9-fa98-4698-8887-14c9290cd028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.