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This paper is devoted to modeling of the pulse scattering by a spherical target immersed in a 
homogeneous waveguide covered with ice. For calculating the echo signal in the frequency domain 
we have followed Hackman and Sammelmann’s general approach. The arising scattering 
coefficients of a sphere were evaluated with the use of the normal mode method. The amount of 
normal modes forming the backscattered field is determined by the given directivity of the source. 
The emitted signal is a pulse with a Gaussian envelope. Computational results are obtained in a 
wide frequency range 8 - 12 kHz for water depths equal to several hundreds of m, and distances 
between the source/receiver and a target from 1 km up to 10 km. The target is assumed to be 
acoustically rigid or fluid. In particular, the properties of the ice cover and a scatterer may 
coincide. 
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1. Introduction
The problem of acoustic pulse scattering by a target embedded in an oceanic waveguide covered 
with ice, is of undoubted importance. This paper is devoted to modeling of the backscattered field 
from a target immersed in a homogeneous waveguide, over a homogeneous, fluid half-space. The 
water layer is covered with ice, which is assumed to be a fluid half-space as well. A spherical 
scatterer of a radius a is acoustically rigid or fluid. In particular, the properties of the ice cover and   
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a target may coincide. The source and receiver are located at the point M (0, y, z), y>0 of the 
waveguide –b ≤ z ≤ d (see Fig.1). First, we will assume that the point source emits a spherical 
incident wave with a cyclical frequency ω. The range r of interest is from 1 km up to 10 km, and the 
frequency band of interest is 8 – 12 kHz 

 

Fig. 1. The scattering geometry. 

The normal mode evaluation is applied to calculate the scattering coefficients of a 
sphere in the frequency domain. The amount of normal modes forming the backscattered field 
is defined by a given directivity of the source. The emitted signal is a pulse with a Gaussian 
envelope. For different distances r, two echo signals are compared: for an acoustically rigid 
scatterer, and for an ice scatterer. Different parts of the echo signal are interpreted. 

2. Theory 

Solving the scattering problem formulated above, we will follow Hackman and 
Sammelmann’s general approach [1] which was applied to the waveguide covered with ice in 
[2], where the radiated signal was assumed to be harmonic. In [1, 2] the acoustic potential of 
the backscattered field from a target is represented in the form 
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In (1) 0 0/k cω=  is the wave number in water, lT  are elements of the free-field T-matrix. The 
coefficients ( )mlA r  in (1) are called the scattering coefficients of a sphere. They depend on the 
reflection coefficients for the upper surface and the lower surface, depth of the water layer, 
frequency, and distance between the target and source/receiver. In this paper we will use the single-
scatter approximation when ( ) ( )ml mlC A=r r . In more realistic medium models it will be necessary 
to take into account the roughness of the undersurface of the ice. Comparison of the effect of 
multiple scattering behaviour of the solution (1), and the effect of the roughness of the undersurface 
of the ice is an interesting and important problem, but it is out of the scope of present paper. 

The truncation level maxl  is set by the rule suggested by Kargl and Marston [3] 
 1/3

max 0 0[ 4.05( ) ] 3l k a k a= + + ,  (2) 
where [x] is the integer part of x. For 2a =  m and 10f = kHz  Eq. (2) gives max 104l = . Thus, 
computing the backscattered field (1), it will be necessary to sum up more than 5000 summands. 

The integral representation of the scattering coefficients ( )mlA r  obtained in [1] is valid 
for arbitrary frequencies, distances between the source and target, and waveguide depths. At 
frequencies of interest, and distances r  from 1 km up to 10 km, the integrand of these 
integrals is rapidly oscillating and slowly decreasing; that makes the straightforward 
calculation of scattering coefficients extremely time-consuming. To speed up the computation 
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of integrals ( )mlA r  we will evaluate them by using the normal mode method, as was proposed in 
[2]. The dispersion equation for finding the eigenvalues jξ ξ=  can be written in the form  
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where 2
0 1µ ξ= − , 2 2

i inµ ξ= − , 2 2
b bnµ ξ= − , 0 /i in c c= , 0 /b bn c c= , 1i bn n< < . 

To the propagating normal modes of the waveguide, the roots jξ  of the dispersion equation 
(3) belonging to the interval (nb, 1) correspond. If the radiation takes place inside a cone, having the 
angular width equal to aa , it is necessary to take into account only propagating normal modes with 

jξ  satisfying the inequality cos( / 2)j aξ a≥ . Solving of Eq. (3) was discussed in details in [2]. 
Let the source emit a signal with a central frequency of fc = 10 kHz and a Gaussian 

envelope  
 2 2( ) exp( 0.5(( ) / ) ) exp( 0.5(( ) / ) )c c ff fωϕ ω ω ω σ σ= − − = − − .  (4) 

Here 2c cfω π= , σf = 9∙102; σω = 2πσf. In the time domain, we will compare signals received 
at the observation point M in the free water space  
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(1) ( )lh x  is the spherical Hankel function of the first kind, and in the case when a scatter is 
located in a waveguide (see (1) ) 
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3. Computational results 

Let us start from the case of a free water space. The radius a of the scatterer is 2m. The 
sound speed in water c0 = 1500 m/s, the water density ρ0 = 103 kg/m3. We will compare the 
echo signals scattered by two targets: impenetrable (acoustically rigid), and an ice sphere with 
the sound speed c and density ρ. If the ice sphere is attenuating c = ci = (3500 - 22.53i) m/s. In 
the case of the non-attenuating ice sphere c = 3500 m/s; ρ = 900 kg/m3. 

Figures 2 and 3 show the normalized echo signal (see (5) and (6)) 
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reflected from the impenetrable (acoustically rigid) sphere (Fig. 2) and the ice attenuating 
sphere (Fig. 3) at r = 1 km.  

If the scatterer is acoustically rigid, there is only one reflected pulse, marked by A. In 
the case of the attenuating ice sphere (see Fig. 3) we get also the pulse B which is reflected 
from the back surface of the sphere and the pulse C corresponding to the superposition of the 
circumferential surface waves of the Whispering Gallery type (propagating internally (see, for 
example, [4] and Fig. 4)). 
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Fig. 2. The normalized echo signal (8) reflected from the acoustically rigid sphere of a radius a = 2 m 
for the free water space at r = 1 km. 

 

Fig. 3. The normalized echo signal (8) reflected from the attenuating ice sphere of a radius a = 2 m for 
the free water space at r = 1 km. 

 
 М 
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Fig. 4. Schematic illustration of circumferential surface waves: Franz type, propagating externally and 
the Whispering Gallery type, propagating internally. 

The pulse corresponding to the Franz waves is not visible in Figs. 2 and 3 because of 
the strong attenuation of these waves in the considered frequency band. Their amplitude does 
not exceed 1∙10-3 and calculated arrival time is 1.3375 s. 

In Fig. 5 the normalized echo signal is calculated for the ice target when we do not take 
into account the attenuation in ice. In this case, the pulse A reflected from the front part of the 
sphere changes insignificantly, as opposed to pulses B and C that increase essentially. One 
more pulse, D, appears. It corresponds to circumferential internal surface waves which 
enveloped the sphere twice. The pulse, E, corresponding to the external circumferential 
surface waves of the Franz type becomes visible.  
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Fig. 5. The normalized echo signal (8) reflected from the non-attenuating ice sphere of a radius a = 2 
m for free water space at r = 1 km. 

Now let us consider a medium model with a waveguide of 200 m depth. The bottom of 
the waveguide is assumed to be sandy. In order to take into account the attenuation in it, the 
sound speed in the bottom cb is considered complex cb = (1730 – 24.74i) m/s. The density of 
the sandy bottom is ρb = 2050 kg / m3. The distance d from the center of the sphere to the 
upper boundary of the waveguide is 30 m, z = - 20 m, r = 4.5 km. 

Figures 6 and 7 show the normalized echo signals  
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(see also Eqs. (1) and (7)), scattered by a sphere of a radius a = 2 m. In Fig. 6 the scatterer is 
acoustically rigid, and in Fig. 7 it is the non-attenuating sphere. In this case, the first pulse A 
is separated into three parts: the first one A(f) corresponds to the pulse, reflected from the front 
part of the sphere (its propagation time is 2(r - a)/c0 = 5.9973 s). The third part A(d) 
corresponds to the pulse reflected from the ice/water interface, put on the sphere, reflected 
from it and going back to the point M along the same way (its propagation time is 2 (rd - 
a)/c0 = 5.9982 s, where rd = (y2 + (-z + 2d)2)1/2). The second part A(f,d) corresponds to the 
pulse reflected from the interface, then put on the sphere, reflected from it, and going back to 
the point M, or in the opposite order: the point M → sphere → interface → point M. The 
propagation time of these two pulses is 5.99775 s. 

In the case of the non-attenuating ice sphere (see Fig. 7) we observe also the pulse B reflected 
from the back surface of the sphere, and the pulse corresponding to the superposition of the 
circumferential internal surface waves of the Whispering Gallery type, which separates into three 
parts C(f), C(d) and C(f,d) in accordance with the way they arrive at the point M. The pulses Bʹ, D(f), 
D(f,d) and D(d) correspond to the pulse which reflected twice from the back surface of the sphere and 
to the circumferential internal surface waves that enveloped the sphere twice. The pulse E 
corresponds to the external circumferential surface waves of the Franz type. 

 
Fig. 6. The normalized echo signal (9) scattered by the acoustically rigid sphere of a radius 

a = 2 m located in a waveguide covered with ice of 200 m depth at d = 30 m, z = - 20 m, r = 4.5 km 
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Fig. 7. The normalized echo signal (9) scattered by the non-attenuating ice sphere of a radius a = 2 m 
located in a waveguide covered with ice of 200 m depth at d = 30 m, z = -20 m, r = 4.5 km. 

 
At r = 4.5 km and at a given directivity of the source, the target is not illuminated by rays 

reflected from the bottom. Now, let us consider the distance r = 5 km, when the target is 
illuminated by rays reflected from the bottom; d = 30 m, z = -20 m, b + d = 200 m. 

Figure 8 shows the normalized echo signal (see (9)), scattered by the non-attenuating ice 
sphere of a radius a = 2 m. The first arriving pulses in Fig. 8 are interpreted similarly to the case 

of r = 4.5 km. The pulses arriving later 6.68 s become difficult to separate and interpret. 

 

Fig. 8. The normalized echo signal (9) scattered by the non-attenuating ice sphere of a radius a = 2 m 
located in a waveguide covered with ice of 200 m depth at d = 30 m, z = - 20 m, r = 5 km. 
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