PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary report on ignitibility of combined pro-ecological waterproofing and fire retardant coatings for paperboard in architectural application

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Both fire and water protection are crucial for the safety and usability of paper-based products applied as building components. The presented study investigates the possibility of combining environmentally-friendly fire retardants with oiland wax-based waterproofing coatings on paperboard for architectural applications. The proposed impregnation technique can be used as protection for paper-based temporary and emergency structures, or as part of the protective system for building envelopes of permanent structures. The fire retardants selected for the tests were diammonium phosphate and a mixture of borax and boric acid in a 1:1 ratio. Single-flame ignitability tests were performed on the impregnated specimens to assess the fire performance of specimens with fire impregnation, waterproofing impregnation and both. A Life Cycle Assessment analysis was performed for fire-retardant paperboard. The study has shown that the application of layered fire and waterproofing treatments on paperboard components is possible and leads to a significant reduction in flammability compared to untreated and only waterproofed specimens.
Rocznik
Strony
105--115
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
  • MSc, Research Assistant; Wrocław University of Science and Technology, Poland
Bibliografia
  • [1] Eekhout, M., Verheijen, F., and Visser, R. (2008). Cardboard in Architecture. IOS Press.
  • [2] Latka, J.F. (2017). Paper in architecture Research by design, engineering and prototyping. A+BE| Architecture and the Built Environment.
  • [3] Jasiolek, A., Latka, J., and Brzezicki, M. (2021). Comparative Analysis of Paper-based Building Envelopes for Semi-permanent Architecture: Original Proposals and Suggestions for Designers. Journal of Facade Design and Engineering, 9(2), 47-72.
  • [4] Bach, R., Wolf, A., Wilfinger, M., Kiziltoprak, N., and Knaack, U. (2021). A Full Performance Paper House. Journal of Facade Design and Engineering, 9(1), 117-130.
  • [5] Cripps, A. (2004). Cardboard as a construction material: a case study. Building Research & Information, 32(3), 207-219.
  • [6] Meer, C. van der (2013). Developing the W-house, the world’s first house made from wrapped cardboard, Delft University of Technology, 2013.
  • [7] Čekon, M., Struhala, K., and Slávik, R. (2017). Cardboard-Based Packaging Materials as Renewable Thermal Insulation of Buildings: Thermal and LifeCycle Performance. Journal of Renewable Materials, 5(1), 84-93.
  • [8] Salavatian, S., D’Orazio, M., Di Perna, C., and Di Giuseppe, E. (2019). Assessment of Cardboard as an Environment-Friendly Wall Thermal Insulation for Low-Energy Prefabricated Buildings. in: Sustain. Build. a Clean. Environ. Sel. Pap. from World Renew. Energy Network’s Med Green Forum 2017, Springer, Cham, 463-470.
  • [9] Asdrubali, F., D’Alessandro, F., and Schiavoni, S. (2015). A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies, 4, 1-17.
  • [10] Diarte, J. and Shaffer, M. (2021). Cardboard Architecture. Enquiry The ARCC Journal for Architectural Research, 18(1), 58-65.
  • [11] Lewin, M., Atlas, S.M., and Pearce, E.M., Eds. (1975). Flame-Retardant Polymeric Materials. Plenum Press, New York.
  • [12] Ayrilmis, N., Korkut, S., Tanritanir, E., Winandy, J.E., and Hiziroglu, S. (2006). Effect of various fire retardants on surface roughness of plywood. Building and Environment, 41(7), 887-892.
  • [13] Ustaomer, D., Usta, M., and Hiziroglu, S. (2008). Effect of boron treatment on surface characteristics of medium density fiberboard (MDF). Journal of Materials Processing Technology, 199(1), 440-444.
  • [14] Konishi, T. and Tamura, M. (2002). Sustainability of Corrugated Cardboard Houses as Temporary Emergency Shelters. in: Sustain. Build. 2002. Proc. Int. Conf. - Challenge, Knowledge, Solut., InHouse Publishing, Rotterdam.
  • [15] Ayan, O. (2009). Cardboard in architectural technology and structural engineering a conceptual approach to cardboard buildings in architecture, ETH.
  • [16] Nagrodzka, M. and Małozięć, D. (2011). Impregnacja drewna środkami ognioochronnymi. Bezpieczeństwo i Technika Pożarnicza (Impregnation of wood with fire retardants. Safety and Fire Technology). 3, 69-75.
  • [17] Sharma, N.K., Verma, C.S., Chariar, V.M., and Prasad, R. (2015). Eco-friendly flame-retardant treatments for cellulosic green building materials. Indoor and Built Environment, 24(3), 422-432.
  • [18] Price, E.J., Covello, J., Paul, R., and Wnek, G.E. (2021). Tannic acid based super-intumescent coatings for prolonged fire protection of cardboard and wood. SPE Polymers, 2(2), 153-168.
  • [19] Wang, N., Liu, Y., Liu, Y., and Wang, Q. (2017). Properties and mechanisms of different guanidine flame retardant wood pulp paper. Journal of Analytical and Applied Pyrolysis, 128, 224-231.
  • [20] Wang, N., Liu, Y., Xu, C., Liu, Y., and Wang, Q. (2017). Acid-base synergistic flame retardant wood pulp paper with high thermal stability. Carbohydrate Polymers, 178, 123-130.
  • [21] Basak, S., Samanta, K.K., Chattopadhyay, S.K., and Narkar, R. (2015). Thermally stable cellulosic paper made using banana pseudostem sap, a wasted byproduct. Cellulose, 22(4), 2767-2776.
  • [22] Basak, S., Patil, P.G., Shaikh, A.J., and Samanta, K.K. (2016). Green coconut shell extract and boric acid: new formulation for making thermally stable cellulosic paper. Journal of Chemical Technology and Biotechnology, 91(11), 2871-2881.
  • [23] Yu, L., Cai, J., Li, H., Lu, F., Qin, D., and Fei, B. (2017). Effects of boric acid and/or borax treatments on the fire resistance of bamboo filament. BioResources, 12(3), 5296-5307.
  • [24] Nassar, M.M., Fadali, O.A., Khattab, M.A., and Ashour, E.A. (1999). Thermal studies on paper treated with flame-retardant. Fire and Materials, 23(3), 125-129.
  • [25] Karaağaçlıoğlu, İ.E. and Çelİk, M.S. (2012). Effect of Boric Acid on Fire Retardant Properties of Compressed Mineral Added Cellulosic Insulators. Proceedings of XIIIth International Mineral Processing Symposium - Bodrum-Turkey, 005 (October), 1-8.
  • [26] Bayatkashkoli, A., Ramazani, O., Keyani, S., Mansouri, H.R., and Madahi, N.K. (2018). Investigation on the production possibilities of high pressure laminate from borax and recycled papers as a cleaner product. Journal of Cleaner Production, 192, 775-781.
  • [27] Kaya, A. and Sahin, H. (2016). The Effects of Boric Acid on Fiberboard Made from Wood/Secondary Fiber Mixtures: Part 3. Utilization of Recycled Waste Office Paper Fibers. American Chemical Science Journal, 16(3), 1-8.
  • [28] Schiavoni, S., D’Alessandro, F., Bianchi, F., and Asdrubali, F. (2016). Insulation materials for the building sector: A review and comparative analysis. Renewable and Sustainable Energy Reviews, 62, 988-1011.
  • [29] Schubert, D. (2011). Boron Oxides, Boric Acid, and Borates. Kirk-Othmer Encyclopedia of Chemical Technology, 1-68.
  • [30] Wang, Q., Li, J., and Winandy, J.E. (2004). Chemical mechanism of fire retardance of boric acid on wood. Wood Science and Technology, 38(5), 375-389.
  • [31] LeVan and Tran (1990). The role of boron in flame retardant treatments.
  • [32] Lewin, M., Atlas, S.M., and Pearce, E.M., Eds. (1978) Flame Retardant Polymeric Materials vol.2. Plenum Press, New York.
  • [33] Gaan, S. and Sun, G. (2007). Effect of phosphorus and nitrogen on flame retardant cellulose: A study of phosphorus compounds. Journal of Analytical and Applied Pyrolysis, 78(2), 371-377.
  • [34] Scharte, B. (2010). Phosphorus-based flame retardancy mechanisms-old hat or a starting point for future development? Materials, 3(10), 4710-4745.
  • [35] International Organization for Standardization (2020). ISO 11925-2:2020 Reaction to fire tests - Ignitability of products subjected to direct impingement of flame - Part 2: Single-flame source test.
  • [36] International Organization for Standardization (2006). ISO 14040:2006 Environmental management - Life cycle assessment - Principles and framework.
  • [37] International Organization for Standardization (2006). ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.
  • [38] Jasiolek, A., Latka, J., and Brzezicki, M. (2021). Biodegradable methods of impregnating paperboard for its use as a building material. International Journal of Sustainable Engineering, 14(5), 1081-1089.
  • [39] Jasiolek, A. (2022). Preserving environmental properties in paper-based architecture. Structures and Architecture. A Viable Urban Perspective?, Eds. M. F. Hvejsel and P. J. S. Cruz, CRC Press, 671-678.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7418cdf-e8d2-4b43-8ab9-f23ba3dbc275
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.