PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Learning in Description Logics with Fuzzy Concrete Domains

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Italian Conference on Computational Logic, CILC 2013, (25-27.09.2013; Catania, Italy)
Języki publikacji
EN
Abstrakty
EN
Description Logics (DLs) are a family of logic-based Knowledge Representation (KR) formalisms, which are particularly suitable for representing incomplete yet precise structured knowledge. Several fuzzy extensions of DLs have been proposed in the KR field in order to handle imprecise knowledge which is particularly pervading in those domains where entities could be better described in natural language. Among the many approaches to fuzzification in DLs, a simple yet interesting one involves the use of fuzzy concrete domains. In this paper, we present a method for learning within the KR framework of fuzzy DLs. The method induces fuzzy DL inclusion axioms from any crisp DL knowledge base. Notably, the induced axioms may contain fuzzy concepts automatically generated from numerical concrete domains during the learning process. We discuss the results obtained on a popular learning problem in comparison with state-of-the-art DL learning algorithms, and on a test bed in order to evaluate the classification performance.
Wydawca
Rocznik
Strony
373--391
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • Dipartimento di Informatica Universit`a degli Studi di Bari “Aldo Moro”, Italy
autor
  • ISTI - CNR, Pisa, Italy
Bibliografia
  • [1] Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite Family and Relations, Journal of Artificial Intelligence Research, 36, 2009, 1–69.
  • [2] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., Eds.: The Description Logic Handbook: Theory, Implementation and Applications (2nd ed.), Cambridge University Press, 2007.
  • [3] Baader, F., Hanschke, P.: A Scheme for Integrating Concrete Domains into Concept Languages, Proceedings of the 12th International Joint Conference on Artificial Intelligence. Sydney, Australia, August 24-30, 1991 (J. Mylopoulos, R. Reiter, Eds.), Morgan Kaufmann, 1991.
  • [4] Bobillo, F., Straccia, U.: fuzzyDL: An expressive fuzzy description logic reasoner, FUZZ-IEEE 2008, IEEE International Conference on Fuzzy Systems, Hong Kong, China, 1-6 June, 2008, Proceedings, IEEE, 2008.
  • [5] Borgida, A.: On the Relative Expressiveness of Description Logics and Predicate Logics, Artificial Intelligence, 82(1–2), 1996, 353–367.
  • [6] Cerami, M., Straccia, U.: On the (un)decidability of fuzzy description logics under Łukasiewicz t-norm, Information Sciences, 227, 2013, 1–21.
  • [7] Drobics, M., Bodenhofer, U., Klement, E.-P.: FS-FOIL: an inductive learning method for extracting interpretable fuzzy descriptions, Int. J. Approximate Reasoning, 32(2-3), 2003, 131–152.
  • [8] Dubois, D., Prade, H.: Possibility Theory, Probability Theory and Multiple-Valued Logics: A Clarification, Annals of Mathematics and Artificial Intelligence, 32(1-4), 2001, 35–66.
  • [9] Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL Concept Learning in Description Logics, Inductive Logic Programming, 18th International Conference, ILP 2008, Prague, Czech Republic, September 10-12, 2008, Proceedings (F. Zelezny, N. Lavraˇc, Eds.), 5194, Springer, 2008.
  • [10] Hájek, P.: Metamathematics of Fuzzy Logic, Kluwer, 1998.
  • [11] Iglesias, J., Lehmann, J.: Towards Integrating Fuzzy Logic Capabilities into an Ontology-based Inductive Logic Programming Framework, Proc. of the 11th Int. Conf. on Intelligent Systems Design and Applications, IEEE Press, 2011.
  • [12] Klir, G. J., Yuan, B.: Fuzzy sets and fuzzy logic: theory and applications, Prentice-Hall, Inc., 1995.
  • [13] Konstantopoulos, S., Charalambidis, A.: Formulating description logic learning as an Inductive Logic Programming task, Proc. of the 19th IEEE Int. Conf. on Fuzzy Systems, IEEE Press, 2010.
  • [14] Lehmann, J.: DL-Learner: Learning Concepts in Description Logics, Journal of Machine Learning Research, 10, 2009, 2639–2642.
  • [15] Lehmann, J., Auer, S., B¨uhmann, L., Tramp, S.: Class expression learning for ontology engineering, Journal of Web Semantics, 9(1), 2011, 71–81.
  • [16] Lehmann, J., Haase, C.: Ideal Downward Refinement in the EL Description Logic, Inductive Logic Programming, 19th International Conference, ILP 2009, Leuven, Belgium, July 02-04, 2009. Revised Papers (L. De Raedt, Ed.), 5989, Springer, 2010.
  • [17] Lisi, F. A., Straccia, U.: Dealing with Incompleteness and Vagueness in Inductive Logic Programming, Proceedings of the 28th Italian Conference on Computational Logic, Catania, Italy, September 25-27, 2013. (D. Cantone, M. Nicolosi Asmundo, Eds.), 1068, CEUR-WS.org, 2013.
  • [18] Lisi, F. A., Straccia, U.: A Logic-based Computational Method for the Automated Induction of Fuzzy Ontology Axioms, Fundamenta Informaticae, 124(4), 2013, 503–519.
  • [19] Lisi, F. A., Straccia, U.: A System for Learning GCI Axioms in Fuzzy Description Logics, Informal Proceedings of the 26th International Workshop on Description Logics, Ulm, Germany, July 23-26, 2013 (T. Eiter, B. Glimm, Y. Kazakov, M. Kroetzsch, Eds.), 1014, CEUR-WS.org, 2013.
  • [20] Lisi, F. A., Straccia, U.: A FOIL-Like Method for Learning under Incompleteness and Vagueness, Inductive Logic Programming - 23rd International Conference, ILP 2013, Rio de Janeiro, Brazil, August 28-30, 2013, Revised Selected Papers (G. Zaverucha, V. Santos Costa, A. Paes, Eds.), 8812, Springer, 2014.
  • [21] Lukasiewicz, T., Straccia, U.: Managing Uncertainty and Vagueness in Description Logics for the Semantic Web, Journal of Web Semantics, 6, 2008, 291–308.
  • [22] Michalski, R.: Pattern recognition as a rule-guided inductive inference, IEEE transactions on Pattern Analysis and Machine Intelligence, 2(4), 1980, 349–361.
  • [23] Motik, B., Rosati, R.: A Faithful Integration of Description Logics with Logic Programming, IJCAI 2007, Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (M. Veloso, Ed.), 2007.
  • [24] Quinlan, J. R.: Learning Logical Definitions from Relations, Machine Learning, 5, 1990, 239–266.
  • [25] Reiter, R.: Equality and Domain Closure in First Order Databases, Journal of ACM, 27, 1980, 235–249.
  • [26] Schmidt-Schauss, M., Smolka, G.: Attributive Concept Descriptions with Complements, Artificial Intelligence, 48(1), 1991, 1–26.
  • [27] Serrurier, M., Prade, H.: Improving Expressivity of Inductive Logic Programming by Learning Different Kinds of Fuzzy Rules, Soft Computing, 11(5), 2007, 459–466.
  • [28] Shibata, D., Inuzuka, N., Kato, S., Matsui, T., Itoh, H.: An Induction Algorithm Based on Fuzzy Logic Programming, Methodologies for Knowledge Discovery and Data Mining, Third Pacific-Asia Conference, PAKDD-99, Beijing, China, April 26-28, 1999, Proceedings (N. Zhong, L. Zhou, Eds.), 1574, Springer, 1999.
  • [29] Straccia, U.: Reasoning within Fuzzy Description Logics, Journal of Artificial Intelligence Research, 14, 2001, 137–166.
  • [30] Straccia, U.: Description Logics with Fuzzy Concrete Domains, UAI ’05, Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence, Edinburgh, Scotland, July 26-29, 2005, AUAI Press, 2005.
  • [31] Straccia, U.: Foundations of Fuzzy Logic and Semantic Web Languages, CRC Studies in Informatics Series, Chapman & Hall, 2013.
  • [32] Zadeh, L. A.: Fuzzy Sets, Information and Control, 8(3), 1965, 338–353.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f74013d7-0f1e-457b-82be-6c984e47f6b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.