Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Skład litologiczny osadów dennych zebranych wzdłuż odnogi Sf. Gheorghe (km 85 – km 15) (strumienie, sztuczne kanały, prostowane meandry, w tym kanały boczne i jeziora), Delta Dunaju, Rumunia
Konferencja
9th World Multidisciplinary Congress on Civil Engineering, Architecture, and Urban Planning - WMCCAU 2024 : 2-6.09.2024
Języki publikacji
Abstrakty
The Sf. Gheorghe distributary (the oldest branch of the Danube River) is subject to different hydro-sedimentary impacts due to the anthropogenic meander cut-off plans undertaken in the last decades for navigational purposes. This study aimed to determine the contents of the main lithological levels (i.e., organic matter – TOM%, carbonates – CAR% and siliciclastics – SIL%) in the bed sediments, using the LOI (Loss in Ignition) method. In this sense, a field sediment investigation has been conducted in 58 sampling sites located on the Sf. Gheorghe Arm (km 85 – km 15) (rivers, artificial channels, rectified meanders, including side channels and lakes), during May 2024. The distribution of the organic matter, carbonates and siliciclastics showed a significant spatial variability. The implemented analyses made it possible to distinguish mineral-rich sediments (>15-30%SIL) found especially in river sections, while organic-rich sediments (>15-30%TOM) were mainly identified in lakes. From these outcomes, it seems reasonable to conclude that the sediment deposition and accumulation are strongly influenced by the local hydrodynamic conditions (fluvial and lacustrine environments) which allow the accumulation of a mixture of different sediments. This study enables quantitative evidence related to the main lithological components of the bed sediments within the Sf. Gheorghe Arm (km 85 – km 15), and present a database for future sustainable ecosystem restoration and management measures, to protect and maintain wildlife habitat and biodiversity on the Danube Delta edifice.
Czasopismo
Rocznik
Tom
Strony
art. no. 32
Opis fizyczny
Bibliogr. 24 poz., tab., wykr., zdj.
Twórcy
autor
- National Research and Development Institute for Marine Geology and Geoecology, GeoEcoMar, Romania; 23-25 Dimitrie Onciul Street 024053, Bucharest, Romania
autor
- National Research and Development Institute for Marine Geology and Geoecology, GeoEcoMar, Romania; 23-25 Dimitrie Onciul Street 024053, Bucharest, Romania
autor
- National Research and Development Institute for Marine Geology and Geoecology, GeoEcoMar, Romania; 23-25 Dimitrie Onciul Street 024053, Bucharest, Romania
autor
- National Research and Development Institute for Marine Geology and Geoecology, GeoEcoMar, Romania; 23-25 Dimitrie Onciul Street 024053, Bucharest, Romania
Bibliografia
- 1. N. Panin, “The Danube Delta. Geomorphology and Holocene evolution: a synthesis“, Géomorphologie Relief Processus Environnement 9 (4), 247–262 (2003).
- 2. N. Panin and D. Jipa, “Danube River sediment input and its interaction with the north-western Black Sea“, Estuarine, Coastal and Shelf Science 54 (3), 551–562 (2002).
- 3. T. S. Bianchi and M. A. Allison, “Large-river delta-front estuaries as natural “recorders” of global environmental change“, Proc. Natl. Acad. Sci., 106 (20), 8085–8092 (2009).
- 4. L. Tiron Duțu, F. Duțu, D. Secrieru, G. Opreanu, “Sediments grain size and geo-chemical interpretation of three successive cutoff meanders of the Danube Delta, Romania“, Geochemistry 79 (2), 399–407 (2019).
- 5. B.V. Driga, Delta Dunării - Sistemul circulaţiei apei (Casa Cărţii de Stiinţă Cluj-Napoca, 2004), [in Romanian], pp. 256.
- 6. O. Pacioglu, F. Duţu, L. Tiron Duţu, The influence of hydrology and sediment grain-size on the spatial distribution of macroinvertebrate communities in two submerged dunes from the Danube Delta (Romania), Limnetica, 41 (1), 85–100 (2022).
- 7. F. Duţu, L. Duţu, I. Catianis, B-A. Ispas, “Sediment dynamics and hydrodynamical processes in the Danube Delta (Romania): A response to hydrotechnical works”, Zeitcshrift fur geomorphologie. 63 (4), 365–378 (2022).
- 8. L. Tiron, M. Provansal, “Dynamique sédimentaire dans un milieu deltaïque – Le Bras de St. George dans le delta du Danube“, Zeitschrift fur Geomorphologie 54 (4), 417–441 (2010).
- 9. K.A. Smith and C.E. Mullins, Soil and Environmental Analysis: Physical Methods. Revised and Expanded (New York, NY, USA: Marcel Dekker, Inc. Soil Survey Division Staff -1993, Soil Survey Manual. Washington, DC, USA: United States Department of Agriculture, 2000), pp. 651.
- 10. ASTM-D2216, Standard test method for laboratory determination of water (moisture) content of soil and rock by mass, Standard D2216-10, ASTM International, West Conshohocken, PA., (2010).
- 11. W. E., Dean, “Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: Comparison with other methods“, J. Sediment. Petrol., 44 (1), 242–248 (1974).
- 12. L. Bengtsson and M. Enell, “Chemical analysis“, in B.E. Berglund (Ed): Handbook of Holocene Palaeoecology and Palaeohydrology (Wiley, Chichester, 1986), pp. 423–445.
- 13. A. Beaudoin, “A comparison of two methods for estimating the organic matter content of sediments“, Journal of Paleolimnology, 29, 387–390 (2003).
- 14. J. Boyle, “Inorganic geochemical methods in paleolimnology“, in: W. M. Last and J. P. Smol, editors. Tracking Environmental Change Using Lake Sediments, Volume 2: Physical and Geochemical Methods (Kluwer, Dordrecht, 2001), pp. 83–141.
- 15. J. Boyle, “A comparison of two methods for estimating the organic matter content of sediments“, Journal of Paleolimnology, 31, 125–127 (2004).
- 16. G. Digerfeldt, S. Olsson, P. Sandgren, “Reconstruction of lake-level changes in Lake Xinias, central Greece, during the last 40 000 years“, Palaeogeography, Palaeoclimatology, Palaeoecology 158, 65–82 (2000).
- 17. University of Cambridge, Department of Geography, http://www.geog.cam.ac.uk
- 18. D. P. Häder, A.T. Banaszak, V. E. Villafañe, M. A. Narvarte, R. A. González, E.W. Helbling, “Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications“, Science of the Total Environment, 713 (2020), 136586, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2020.136586., (https://www.sciencedirect.com/science/article/pii/S0048969720300966)
- 19. T. Zoumis, A. Schmidt, L. Grigorova, W. Calmano, “Contaminants in sediments: remobilisation and demobilisation“, Science of the Total Environment 266, 195–202 (2001) ISSN 0048-9697, https://doi.org/10.1016/S0048-9697(00)00740-3, (https://www.sciencedirect.com/science/article/pii/S0048969700007403)
- 20. W. Ricken, “Sedimentation as a Three-Component System. Organic Carbon, Carbonate, Noncarbonate“, Lecture Notes in Earth Sciences Series (XII, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong: Springer-Verlag, 51, 1993), pp. 211.
- 21. J. Perrin, “Classification des sols organiques“, Bulletin De Liaison Des Laboratoires Des Ponts Et Chaussées, [in French], 36–47 (1974).
- 22. R.L. Tate, Soil organic matter. Biological and Ecological Effects (John Wiley and Sons, New York, 1987), pp. 291.
- 23. G. Van der Veer, “Geochemical soil survey of The Netherlands. Atlas of major and trace elements in topsoil and parent material; assessment of natural and anthropogenic enrichment factors“, Neth. Geogr. Stud., 347, 1–245 (2006).
- 24. E.M. Emelyanov and K.M. Shimkus, Geochemistry and Sedimentology of the Mediterranean Sea (D. Reidel Publishing Company, Dordrecht, Holland, 1986), pp. 567.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f73c580a-f8be-464d-9467-437d28c0cc8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.