PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of the scale effect on flow around a propeller using the CFD method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an investigation of the scale effect on the flow around a propeller using the CFD method. The differences in the numerical setup and the results obtained for the characteristics of an open water propeller are described and analysed in this paper. Moreover, the paper also highlight and analyse the scale effect on differences in flow around the propeller, such as the pressure fields in the cross section, the distributions of the skin friction coefficient and limiting streamlines on the propeller blade, the vortices in the wake of the propeller, and the velocity fields. The differences in the flow around the propeller are more clearly seen when it works under heavy loading conditions, an important finding that can support designers in improving propeller performance, investigating cavitations, etc. at the full scale. The reference propeller used in this study is the benchmark propeller PPTC VP 1304.
Słowa kluczowe
Rocznik
Tom
Strony
59--66
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Nha Trang University, Nha Trang, Viet Nam
autor
  • Ho Chi Minh City University of Technology (HCMUT), Viet Nam
  • Vietnam National University, Ho Chi Minh City, Viet Nam
  • Ho Chi Minh City University of Technology (HCMUT), Viet Nam
  • Vietnam National University, Ho Chi Minh City, Viet Nam
autor
  • Ho Chi Minh City University of Technology (HCMUT), Viet Nam
  • Vietnam National University, Ho Chi Minh City, Viet Nam
autor
  • Vietnam Maritime University, Hai Phong, Viet Nam
Bibliografia
  • 1. H. Yao and H. Zhang, “Numerical simulation of boundarylayer transition flow of a model propeller and the full-scale propeller for studying scale effects,” Journal of Marine Science and Technology, vol. 23, pp. 1004-1018, 2018. https://doi.org/10.1007/s00773-018-0528-4.
  • 2. S.-B. Muller, M. Abdel-Maksoud, and G. Hilbert, “Scale effects on propellers for large container vessels,” in First International Symposium on Marine Propulsors, Trondheim, 2009, pp. 1-9.
  • 3. A. Lungu, “Scale effects on a tip rake propeller working in open water,” Journal of Marine Science and Application, vol. 7, no. 11, p. 404, 2019. https://doi.org/10.3390/jmse7110404.
  • 4. V. Krasilnikov, J. Sun, and K. H. Halse, “CFD investigation in scale effect on propellers with different magnitude of skew in turbulent flow,” in First International Symposium on Marine Propulsors, Trondheim, 2009, pp. 25-40.
  • 5. X.-Q. Dong, W. Li, C.-J. Yang, and F. Noblesse, “RANSEbased simulation and analysis of scale effects on open-water performance of the PPTC-II benchmark propeller,” Journal of Ocean Engineering and Science, vol. 3, no. 3, pp. 186-204, 2018. https://doi.org/10.1016/j.joes.2018.05.001.
  • 6. A. Bhattacharyya, V. Krasilnikov, and S. Steen, “Scale effects on open water characteristics of a controllable pitch propeller working within different duct designs,” Ocean Engineering, vol. 112, pp. 226-242, 2016. https://doi.org/10.1016/j.oceaneng.2015.12.024.
  • 7. M. Kraskowski, “CFD optimisation of the longitudinal volume distribution of a ship’s hull by constrained transformation of the sectional area curve,” Polish Maritime Research, vol. 29, no. 3, pp. 11-20, 2022. https://doi.org/10.2478/pomr-2022-0022.
  • 8. T.-H. Le, N. D. Anh, T. N. Tu, N. T. N. Hoa, and V. M. Ngoc, “Numerical investigation of length to beam ratio effects on ship resistance using RANSE method,” Polish Maritime Research, vol. 30, no. 1, pp. 13-24, 2023. https://doi.org/10.2478/pomr-2023-0002.
  • 9. T. Szelangiewicz and T. Abramowski, “Numerical analysis of influence of ship hull form modification on ship resistance and propulsion characteristics,” Polish Maritime Research, vol. 16, no. 4, pp. 3-8, 2009. https://doi.org/10.2478/v10012-008-0049-x.
  • 10. [T. Q. Chuan, N. K. Phuong, T. N. Tu, M. Van Quan, N. D. Anh, and T.-H. Le, “Numerical study of effect of trim on performance of 12500DWT cargo ship using RANSE method,” Polish Maritime Research, vol. 29, no. 1, pp. 3-12, 2022. https://doi.org/10.2478/pomr-2022-0001.
  • 11. N. T. N. Hoa, B. N. Vu, N. T. Tran, N. M. Chien, and T. H. Le, “Numerical investigating the effect of water depth on ship resistance using RANS CFD method,” Polish Maritime Research, vol. 26, pp. 56-64, 2019. https://doi.org/10.2478/pomr-2019-0046.
  • 12. M. Visonneau, P. Queutey, and G. Deng, “Model and full-scale free-surface viscous flows around fully-appended ships,” in ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands, September 5-8, 2006: Citeseer.
  • 13. T. N. Tu, “Numerical simulation of propeller open water characteristics using RANSE method,” Alexandria Engineering Journal, vol. 58, no. 2, pp. 531-537, 2019. https://doi.org/10.1016/j.aej.2019.05.005.
  • 14. J. Felicjancik, S. Kowalczyk, K. Felicjancik, and K. Kawecki, “Numerical simulations of hydrodynamic open-water characteristics of a ship propeller,” Polish Maritime Research, vol. 23, no. 4, pp. 16-22, 2016. https://doi.org/10.1515/pomr-2016-0067.
  • 15. H. Nouroozi and H. Zeraatgar, “Propeller hydrodynamic characteristics in oblique flow by unsteady RANSE solver,”Polish Maritime Research, vol. 27, no. 1, pp. 6-17, 2020. https://doi.org/10.2478/pomr-2020-0001.
  • 16. N. M. Nouri and S. Mohammadi, “Numerical investigation of the effects of camber ratio on the hydrodynamic performance of a marine propeller,” Ocean Engineering, vol. 148, pp. 632-636, 2018. https://doi.org/10.1016/j.oceaneng.2017.06.026.
  • 17. A. Zinati, M. J. Ketabdari, and H. Zeraatgar, “Effects of propeller fouling on the hydrodynamic performance of a marine propeller,” Polish Maritime Research, vol. 30, no. 4, pp. 61-73. https://doi.org/10.2478/pomr-2023-0059.
  • 18. T. N. Tu and N. M. Chien, “Comparison of different approaches for calculation of propeller open water characteristic using RANSE Method,” Naval Engineers Journal, vol. 130, no. 1, pp. 105-111, 2018.
  • 19. T. N. Tu, M. Kraskowski, N. M. Chien, V. T. Anh, D. L. Luu, and N. K. Phuong, “Numerical study on the influence of trim on ship resistance in trim optimization process,” Naval Engineers Journal, vol. 130, no. 4, pp. 133-142, 2018.
  • 20. T. N. Tu, D. D. Luu, N. T. H. Ha, N. T. T. Quynh, and N. M. Vu, “Numerical prediction of propeller-hull interaction characteristics using RANS method,” Polish Maritime Research, 2019. https://doi.org/10.2478/pomr-2019-0036.
  • 21. T.-H. Le et al., “Numerical investigation on the effect of trim on ship resistance by RANSE method,” Applied Ocean Research, vol. 111, p. 102642, 2021. https://doi.org/10.1016/j.apor.2021.102642.
  • 22. A. Sanchez-Caja, J. Gonzalez-Adalid, M. Perez-Sobrino, and T. Sipila, “Scale effects on tip loaded propeller performance using a RANSE solver,” Ocean Engineering, vol. 88, pp. 607-617, 2014. https://doi.org/10.1016/j.oceaneng. 2014.04.029.
  • 23. U. Barkmann, H.-J. Heinke, and L. Lubke, “Potsdam propeller test case (PPTC),” in Proceedings of the Second International Symposium on Marine Propulsors-SMP’11, 2011, pp. 36-38.
  • 24. https://www.sva-potsdam.de/en/ittc-benchmark/.
  • 25. J. Carlton, Marine propellers and propulsion. Elsevier, 2018. https://doi.org/10.1016/B978-0-7506-8150-6.X5000-1.
  • 26. S. Sun, C. Wang, C. Guo, Y. Zhang, C. Sun, and P. Liu, “Numerical study of scale effect on the wake dynamics of a propeller,” Ocean Engineering, vol. 196, p. 106810, 2020. https://doi.org/10.1016/j.oceaneng.2019.106810.
  • 27. A. Peters, U. Lantermann, and O. el Moctar, “Numerical prediction of cavitation erosion on a ship propeller in modeland full-scale,” Wear, vol. 408, pp. 1-12, 2018. https://doi.org/10.1016/j.wear.2018.04.012.
  • 28. F. Di Felice, “Experimental investigation of the propeller wake at different loading conditions by particle image velocimetry,”Journal of Ship Research, vol. 48, no. 02, pp. 168-190, 2004. https://doi.org/10.5957/jsr.2004.48.2.168.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f736c909-8f5d-4139-92b0-82c38d82bfbd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.