PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Residual life estimation of healthy and cracked composite beam using experimental and numerical modal analysis methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Preventive maintenance is beneficial to minimize unexpected breakdowns in industries with continuous production. Composite structures are used for naval applications like ship hulls and marine propellers. In most of the industries, composite structural health analysis using experimental and numerical model are available for damage detection and estimate the residual life of composite beams. The present work is focusses on identification of damage and estimate residual life of composite healthy and cracked beams. Free vibrational analysis is carried out on composite beam made of Glass fiber reinforced polymer (GFRP) with a different crack orientation. A Fast Fourier Transform (FFT) spectrum analyzer associated with engineering data management (EDM) software utilized for experimental analysis to detect presence of damage in cracked composite beam. Finite element method (FEM) software called Analysis of composite pre/post (ACP) available in ANSYS R3 is used to compare the natural frequency results of healthy composite beam with cracked composite beam with different ply orientations. For validation of numerical modal evaluation, the consequences acquired from ANSYS R3 Finite element analysis (FEA) software are in comparison with experimental results received by impact hammer method. The fatigue life of a damaged composite beam is estimated the use of “Hwang and Han’s” fatigue life equation.
Rocznik
Strony
127--134
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, Gayatri Vidya Parishad College of Engineering, Visakhapatnam, Andhra Pradesh, India
  • Department of Mechanical Engineering, Gayatri Vidya Parishad College of Engineering, Visakhapatnam, Andhra Pradesh, India
Bibliografia
  • 1. Pratibha, M. Karandikar V.V. (2016). Experimental Investigation of crack dection of cantilever beam. IOSR Journal of Mechanical and Civil Engineering, Vol. 13, pp.12-17.
  • 2. C. Santiuste, S. Sanchez-Saez and E. Barbero.(2010). Residual flexural strength after low-velocity impact in glass/polyester composite beams. Composite Structures, Vol. 92, pp. 25-30.
  • 3. S. Chakraborty, M. Mukhopadhyay and A.R. Mohanty. (2000). Free Vibrational Responses of FRP Composite Plates: Experimental and numerical studies. Journal of Reinforced Plastics and Composites, Vol. 19, pp. 535-551.
  • 4. Bilel Aidi, Mohamed Shaat, Abdessattar Abdelkefi and Scott W case. (2017). Free vibration analysis of cantilever open hole composite plates. Meccanica, Vol. 52, PP. 2819-2836.
  • 5. Cui Yanbin, shi Lei, Zhao Feng. (2010). Modal analysis of wind turbine blade made of composite laminate plates. In: Asia-Pacific Power and Energy Engineering Conference APPEEC2010, Chengdu, China, 28-31 March 2010.
  • 6. Pushparaj Pingulkar and Suresha B. (2016). Free vibration analysis of laminated composite plates using finite element method. Polymers & polymer composites, Vol. 24, pp. 529-538.
  • 7. Mishra, S.K. (2015). Modal analysis of woven fiber composite plates with different boundary conditions. International Journal of Structural Stability and Dynamics, Vol. 15, pp. 1-17.
  • 8. R.R. Chaudhari, Y.F. (2015). Vibration analysis of laminated triangular plate by experimental and finite element analysis. International Journal of Engineering Research and General Science, Vol. 3, pp. 786-791.
  • 9. More, A.S. (2016). Vibration analysis of cracked cantilever beam. International Research Journal of Engineering and Technology, Vol. 3, pp. 1171-1181.
  • 10. Sharayu U. Ratnaparkhi, S.S. (2013). vibration analysis of composite plate. International Journal of Modern Engineering Research, Vol. 6, pp. 377-380.
  • 11. Reddy, P.N. (2018). An Analysis of Composite Drive Shaft Using ANSYS ACP. International Journal of Mechanical and Production Engineering Research and Development , Vol. 8, pp. 117-124.
  • 12. Soham S. Vader, V.A. Raikar. (2017) Crack detection in composite cantilever beam by vibration analysis and numerical method. International Research Journal of Engineering and Technology, vol. 4, pp. 1776-1784.
  • 13. Mirko S. Maksimovic, I.V. (2018). Residual life estimation of cracked aircraft structural components. FME Transactions , Vol. 46, pp.124-128.
  • 14. Xu lei, Wang Rui, Zhang Shujie and Liu Yong. (2011). Vibration characteristics of glass fabric/epoxy composites with different woven structures. Journal of composite materials, Vol. 45, pp. 1069.
  • 15. Kale Dipak R., R.R. Arakerimath.(2020).Natural frequency for a composite structure made with a combination of metal and laminated composites. International Journal of Recent Technology and Engineering, Vol. 8, pp. 2340-2344, 2020.
  • 16. Y.L. Hu, E. Madenci. (2017). Peridynamics for fatigue life and residual strength prediction of composite laminates. Composite Structures, Vol. 160, pp. 169-184.
  • 17. Prenil Poulose, Zhong Hu. (2010). Strength evaluation and failure predication of a composite wind turbine blade using FEA. In: Proceeding of the ASME International Mechanical Engineering Congress and Exposition IMECE2010, British Columbia, Canada, 12-18, November, pp. 1-7.
  • 18. A.R.A. Syayuthi, M.S. Abdul Majid, M.J.M. Ridzuan, K.S. Basaruddin, Peng, T.L.(2017). Effect of stress ratio on the fatigue behaviour of glass/epoxy composite, In: International Conference on Applications and Design in Mechanical Engineering (ICADME 2017), Penang, Malaysia, 21-22, August, pp. 1-6.
  • 19. Wei Lian, Weixing Yao. (2010). Fatigue life prediction of composite laminates by FEA simulation method. International Journal of Fatigue, Vol. 32, pp. 123-133.
  • 20. Roberto Capozucca. (2014). vibration of CFRP Cantilever Beam with Damage. Composite structure. DOI: http://dx.doi.org/10.1016/j.compstruct.2014.04.027
  • 21. Padmanabhan, A.b. (2014). Design for Fatigue and simulation of glass fiber/epoxy composite automobile leaf spring. ARPN Journal of Engineering and Applied Science, Vol. 9, No.3, pp. 196-203.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7364fe9-5685-46ac-84c3-e7f90c16185b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.