PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shape memory process in resorbable polymers: effect on surface properties and cell adhesion

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objectives of this study were to confirm the shape memory behavior of two new bioresorbable terpolymers (L-lactide, glycolide, and trimethylene carbonate: L-PLGTMC and B-PLGTMC), to follow the influence of the shape memory process on their surface properties and to test their cytocompatibility using osteoblast-like cells. For this purpose, foils of both terpolymers were prepared. The terpolymers' ability to recover up to 92-93% of the memorized shape within 10 seconds was obtained. The influence of shape memory process on the surface properties was assessed by water contact angle (WCA) measurement and atomic force microscopy (AFM) and the results suggested that both terpolymers preserved the hydrophilicity after recovery and also that B-PLGTMC polymer was rougher than L-PLGTMC (about 9 folds more). The AFM pictures showed the presence of spherical shape hills on the B-PLGTMC foil surface which after the stretching procedure became oriented toward the direction of the applied load. The terpolymers were seeded on both sides (Top and Bottom faces) with human MG63 osteoblast-like cells. Cell viability was assessed after 1, 3 and 7 days, using MTT assay. Results revealed an increasing number of metabolically active cells with the incubation time, suggesting, together with nitric oxide (NO) level determination, the cytocompatibility of both terpolymers. Cell spreading and morphology were investigated by H&E staining and obtained results corresponded well with ones of MTT and NO.
Słowa kluczowe
Rocznik
Strony
8--11
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
  • Bioengineering, Faculty of Engineering, UP - University of Porto, Reitoria da U. Porto Praca Gomes Teixeira, Porto 4099-002, Portugal
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • Bioengineering, Faculty of Engineering, UP - University of Porto, Reitoria da U. Porto Praca Gomes Teixeira, Porto 4099-002, Portugal
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. CuRiE Skłodowskiej 34, 41-800 Zabrze, Poland
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. CuRiE Skłodowskiej 34, 41-800 Zabrze, Poland
  • Institute of Chemistry, Environmental Protection and Biotechnology, Jan Dlugosz University in Częstochowa, al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
autor
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Feninat F., Laroche G., Fiset M., Mantovani D.: Shape memory materials for biomedical applications. Adv Eng Mater 4(3) (2002) 91-104.
  • [2] Yakackia C., Shandsa R., Lanningb C., Recha B., Ecksteina A., Gall K.: Unconstrained recovery characterization of shape-memory networks for cardiovascular applications. Biomaterials 28 (2007) 2255-2263.
  • [3] Min C., Cui W., Bei J., Wang S.: Biodegradable shape-memory polymer — polylactide-co-poly(glycolide-co-caprolactone) multiblock copolymer. Polym Adv Technol 16 (2005) 608-615.
  • [4] Zini E., Scandola M., Dobrzynski P., Kasperczyk J., Bero M.: Shape memory behavior of novel (L-lactide-glycolide-trimethylene carbonate) terpolymers. Biomacromolecules 8 (2007) 3661-3667.
  • [5] Neuss S., Blomenkamp I., Stainforth R., Boltersdorf D., Jansen M., Butz N., Perez-Bouza A., Knuchel R.: The use of a shape-memory poly(ε-caprolactone)dimethacrylate network as a tissue engineering scaffold. Biomaterials 30 (2009) 1697-1705.
  • [6] Baer G. M., Small W., Wilson T. S., Benett W. J., Matthews D. L., Hartman J.: Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent. Biomed Eng Online 6 (2007) 43.
  • [7] Ortega J. M., Small W., Wilson T. S., Benett W. J., Loge J. M., Maitland D. J.: A shape memory polymer dialysis needle adapter for the reduction of hemodynamic stress within arteriovenous grafts. IEEE Trans Biomed Eng 54(9) (2007) 1722-1724.
  • [8] Lendlein A., Kelch S., WILEY-VCH, Germany 2002.
  • [9] Leng J. S., Lan X., Liu Y. J., Du, S. Y.: Shape-menory polymers and their composites: Stimulus methoda and applications. Prog Mater Sci 56 (2011) 1077-1135.
  • [10] Sokolowski W.: Shape memory polymer foams for biomedical devices. Open Med Dev J 2 (2010) 20-23.
  • [11] Xu X., Song J.: Thermal Responsive Shape Memory Polymers for Biomedical Applications, USA.
  • [12] Davachi S.M., Kaffashi B., Mohammadi J., Roushandeh M., Torabinejad B.: Investigating thermal degradation, crystallization and surface behavior of l-lactide, glycolide and trimethylene carbonate terpolymers used for medical applications. Mater Sci Eng C 32 (2012) 98-104.
  • [13] Smola A., Dobrzynski P., Pastusiak M., Sobota M., Kasperczyk J.: New Semi-crystalline bioresorbable materials with shape-memory properties. Eng Biomater 89-91 (2009) 82-87.
  • [14] Fischer A. H., Jacobson K. A., Rose J., Zeller R.: Hematoxylin and Eosin Staining of Tissue and Cell Sections, Cold Spring Harb Protoc 2008.
  • [15] Life Technologies, Vybrant® MTT Cell Proliferation Assay Kit, 2002.
  • [16] Molecular Probes, Griess Reagent Kit for Nitrite Determination (G-7921), 2003.
  • [17] Smola A., Dobrzynski P., Sobota M., Pastusiak M., Kaczmarczyk B.: Preliminary tests of forming bioresorbable stent models with shape memory properties intended to use in lower respiratory tract Treatment. Eng Biomater 96-98 (2010) 96-98.
  • [18] Ferry J. D.: Viscoelastic Properties of Polymers; John Wiley & Sons: New York, 1980.
  • [19] Bacakova L., Filova E., Parizek M., Ruml T., Svorcik V.: Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv 29(6) (2011) 739-67.
Uwagi
EN
This study was supported from Polish National Science Center (2011/01/B/ST5/06296).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f735a804-c82e-4c43-a91b-9cc67f3de387
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.