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The paper concerns an idea of preparing auxiliary equations and data for the finite 
element method assembly. This is made for a specific element type and element order and is 
referred to as the pre-assembly. Most importantly the prepared auxiliary equations require 
that only the element’s placement (coordinates) needs to be known, while the remaining 
coefficients that are required are stored in data sheets. The pre-assembly allows 
programmers who implement the FEM to significantly reduce the effort put into the 
assembly algorithm through its replacement by a few simple equations and the application of 
the prepared data. These data sheets can be prepared and can be utilized by FEM 
programmers. The construction of these data sheets for non-curvilinear quadrilateral 
Lagrangian elements (of any selected order) is explained in this paper. 
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1. Introduction 
 

Generally an analysis with the use of the FEM (finite element method) can be 
divided into: 
 definition of the problem – its geometry, boundary conditions, stimuli and 

environment parameters, 
 meshing – which follows the choice of the geometrical elements e.g. as 

triangles or quadrilaterals, 
 assembly – where the equations of the problem are formulated, 
 problem solution – i.e. the actual computations of the field (the most 

significant computational weight is usually related to this part), 
 post-processing – where the solution had been obtained and the results are 

interpreted. 
In an electromagnetic field problem the system of equations is built basing on 

the weak formulation (which can be usually derived in general for a class of 
problems) and the mesh (along with the elements that it comprises of). In a 
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traditional approach, when the element types have been selected, the local 
stiffness matrices are built for each element (note that for nonlinear analyses the 
dependencies are obtained instead). These are then added up to formulate the 
system of equations describing the problem. The most effort is put nowadays 
into reducing the computation time related to the solution of the formulated 
system of equations – even more so when the problem is time-dependent and the 
entire system of equations needs to be solved for each selected time instance. 

In a time dependent problem the assembly part does not significantly 
contribute to the computation time, which is why there hasn’t been much effort 
in optimizing it. However, if one deals with an object with moving parts e.g. 
induction motor [1] or for some other computational reasons (like when 
emphasizing adaptive mesh algorithms [2]) the meshing (and hence also the 
assembly) needs to be performed in every time-step of the analysis then it 
becomes worthwhile to optimize the assembly part. 

This paper deals with a methodology where auxiliary formulae and data are 
prepared, which could be applied between the meshing and assembly, in order to 
simplify the assembly performed for each element. This preparation of formulae 
and data will be further on referred to as the pre-assembly. 

The motivation of the pre-assembly is not only related to the time consumed 
for the assembly part but also it allows to reduce the effort put into the 
implementation of the FEM assembly. So far, in their previous paper [3], the 
authors have been successful in displaying the pre-assembly for non-curvilinear 
triangular Lagrange elements or arbitrary order, while this paper presents the 
case for non-curvilinear quadrilateral Lagrangian elements. The notation is as 
follows: 
 mg_is the number of nodes representing the geometrical placement of the 

element (for non-curvilinear elements mg_=_ 4), 
 m is the number of nodes for the interpolation of the component (this will be 

made by the shape functions described by N), 
 n = m  is the number of nodes on the element edge, 
 no is the order of the element (which in case of the quadrilateral Lagrangian 

element equals n_–_1). 
For triangular elements the pre-assembly is based on exact formulae while 

for quadrilateral elements the pre-assembly will be based on approximate 
formulae. 

 
2. Domain-level auxiliary equations 

 
 This section explains how an appropriate form of the problem’s weak 
formulation is obtained before the most important part of the pre-assembly is 
performed i.e. the derivations for a selected element type. 
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Assuming a linear medium, a 2D transient magnetic field problem is defined by 
the equation for the magnetic vector potential component A: 
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from which the weak formulation can be obtained [4, 5]: 
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where  is the considered domain, w is the so-called test function, Jext is an externally 

enforced current density. 
n
A

  is the derivative across the direction normal to the 

boundary   (that covers the domain ) and  describes the curve along the 
domain boundary. For convenience, the terms in (2) are presented as: 
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 When the integration of the weak formulation is divided into the sub-domains 
represented by each element, a transformation is performed from the global 
coordinates (x, y) to local ones denoted by (, ). This can be done with the 
application of the Jacobian matrix of transformation: 
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In terms of (2) the most important relationships are: 
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and: 
    .dddetdd Jyx  (8) 
The above equations allow to write the terms (3) and (4) respectively as: 
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and: 
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3. Element-level auxiliary equations 

 
 When the domain is divided into elements, one can formulate additional auxiliary 
expressions concerning the element’s b-th DOF (degree of freedom) and a-th test 
function: 

,dd
det

1

'
, 
















































































































Jbbaa

bbaa

ba
NxNxNxNx

NyNyNyNy

 (11) 

and: 
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where Ni denotes the respective basis function (which equals 1 at (Nxi, Nyi) and 0 
at all the other nodes) and _' is the base element area. The above equations are 
actually useful for any 2D element type where the environment parameters  
and  are constant at least throughout the element. For any 2D element one can 
present a scalar function like the magnetic vector potential component A as: 
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where m is the number of element nodes and Ai are the values of the scalar function at 
the node’s coordinates (Ni, Ni). The global coordinates can be presented as: 
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where (xi, yi) are the element’s subsequent essential vertices (required for the 
presentation of the element’s placement) and G represent the geometrical basis 
functions. For a non-curvilinear quadrilateral element (Figure 1) mg = 4 and: 
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which are actually the same as the component basis functions N for m = 4 (the G 
functions can be generally built in the same way as the N functions). 
 

 
 

Fig. 1. Non-curvilinear quadrilateral Lagrangian element: a) general notation, b) exemplary 
element of the 2nd order, c) placement in local coordinate system 

 
Subject to the equations (14-18) the Jacobian matrix determinant equals: 
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The determinant det_J, contrary to the case for triangular elements [3], is not a constant 
value in terms of the local coordinates. This is a serious drawback as therefore a non-
constant term appears in the denominator of (11). In the case of (5) and (12) one can 
still derive exact formulae (as in the case of triangular Lagrange elements) and 
analytically perform the integration, however when considering term (11) the 
approach needs to be different. 
 Whether exact or approximate formulae will be used – the derivations are 
complicated and therefore the pre-assembly needs to be performed with the use 
of software that is capable of performing symbolic computations on multivariate 
polynomials. The authors use their own symbolic computation library written in 
C# (which will be explained in another paper). If one does not want to 
implement their own algorithms then commercial software like Mathematica [6] 
or Maple [7] can be used. 
 

4. Exact formulae of the pre-assembly 
 
 This section displays how the formulae of the pre-assembly can be derived 
for the terms denoted by  and d. These terms do not contain polynomials in the 
denominator and negative exponentiations hence the well-known rule for 
multivariate polynomial integration can be applied: 
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where u with the appropriate indices are the polynomial variables. 
 When considering a,b one can notice that generally: 
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hence generally the form of a,b is: 
 ).( 1;,;,;,, babababa ccc     (26) 
where: 
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The advantage of this form is that the c coefficients can be obtained globally for 
a non-curvilinear quadrilateral Lagrangian element of arbitrary order while only 
the ,  and  need to be evaluated for each element using (20-22) and (27). 
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Hence an auxiliary data sheet for a,b can be formulated in the form of a 3D 
structure (Figure 2). The structure does not have to be presented for b > a as: 
 .,, abba    (28) 
 

 
 
Fig. 2. The coefficients required for the evaluation of Κa,b depicted in the form of a 3D structure: 

a) general display, b) exemplary values for an element of the 2nd order 
 
At the element level – equation (26) relates to  (for w = Na) in the following way: 
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 The expression d is considered next. The manner in which d is handled for 
the a-th test function depends mostly on four overall questions: 
a) is the element connected to a boundary of the studied domain? 
b) does the node (Nxa, Nya) belong to the boundary edge? 
c) what type of boundary condition is imposed? 
d) is the boundary condition homogeneous on the element’s edge? 
 The term d is omitted completely unless both a) and b) are true. The rest 
depends on the combination of c) and d). Only the case for the homogeneous 
Neumann boundary condition is discussed in this paper. This case is the most 

convenient to handle since 
n
A

  can be put in front of the integration: 
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 The rest depends on which basis function one currently considers for w. Let us 
assume that  represents a variable in the local coordinate system whose axis has the 
same direction as the boundary curve (Figure 3). 
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Fig. 3. Visualization of the auxiliary variable  and its axis along the boundary 
 
 One can then build an auxiliary formula: 
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where n is the number of nodes on the element edge that represents the boundary 
fragment. At the element-level – equation (31) relates to d (for w = Na) in the 
following way: 
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where _b is the length of the boundary fragment. 
 

5. Aproximate formulae of the pre-assembly 
 
 This section displays how the formulae of the pre-assembly can be derived 
for the term denoted by . It contains a non-constant expression (in terms of  
and ) in the denominator, hence the integration cannot be performed with the 
use of (23). Due to (14) one can write (11) as: 
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Here an auxiliary notation is introduced: 
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For further convenience, in order to reduce the number of added terms, one can write: 
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where: 
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In order to reduce the number of symbolic variables – again the coefficient  is put in 
front of the remaining part of the expression: 
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and the expression under the integral is a function of , ,  and . 
 Obviously, for numerical reasons [8] one should avoid quadrilateral elements with 
angles above 180° (as then a singularity is encountered). Here one can notice an 
advantage of the form (38) as the denominator must only be considered as yielding 
positive values (obviously – because for  = 0,  = 0 it becomes 1 and if no internal 
angles above 180° are present in the element then the plane defined by  1  
does not intersect with the area of the base square bounded by  [–1, 1],  [–1, 1]). 
 The denominator is taken into account as: 
  .1  r  (40) 
An attempt is made to approximate the reciprocal of r: 

  ,1)(
r

rf   (41) 

by means of a polynomial f~  in order to allow integration by means of analytical 
formulae. At this stage it is worthwhile to observe how r intersects the (, ) plane for 
typical element shapes (Figure 4 – next page). 
 In the analysis presented in Figure 4 the maximum and minimum values of r have 
been deliberately presented so that the interval, in which the function f is to be 
approximated, can be chosen. One can notice that even for quadrilaterals with angles 
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close to 180° the value rmin does not reach below 0.1 hence in practice this can be the 
lower boundary of the approximation, while the upper boundary value could be 
anything above 2. 
 

 
 

Fig. 4. Examples of quadrilateral elements and their respective intersections of the r function  
with the - plane along with the minimum and maximum values of r within the base square 

 
 The approximating polynomial will be actually built with interpolation, however 
Chebyshev nodes must be used in order to avoid the Runge effect [9], which is a 
common occurrence for these types of functions. Next the polynomial f~  must 
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assume the form dependent on the variables  and . Subject to the approximation – 
equation (39) becomes: 

   ,dd~)(1 1

1

1

1
,,,

4

1 1
,  

  


 




 fxxyy klba
l

l

k
lklkba  (42) 

where f~  initially assumes the form: 

  ,~ 1

1
0

I







n

i

i
irvvf iv ℝ, (43) 

where nI is the number of nodes used in the interpolation. When a substitution is 
performed according to (40) – a polynomial is obtained, which generally has the form: 

  ,!~ 1

1
0

I

 


 












n

i isqp

qpqp
i pqs

ivvf   (44) 

following the multinomial theorem. 
 From the perspective of the variables  and   – f~  is a polynomial whose 
multipliers of each term _

p_
q could be stored in an upper-left triangular matrix 

(like depicted in Figure 5), where the polynomial follows the general formula: 

  ,~ 1

0

1

0
,

I I

 









n

p

pn

q

qp
qpvf  qpv , ℝ. (45) 

 

 
 

Fig. 5. Illustration of the coefficients of f in an upper-left triangular matrix 
 
Equation (39) takes the form: 

  ,)(1 1

0

1

0
,,,,,

4

1 1
,

I I

 






 


n

i

in

j

ji
jiklba

l

l

k
lklkba xxyy 


  (46) 

where according to the idea of the pre-assembly – the terms a,b,l,k,i,j can be prepared 
for a non-curvilinear quadrilateral Lagrangian element of a selected order and 
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the equation above is to be used for the evaluation for each element in the mesh. 
a,b can be then used in the equation for 

aNw : 

  .1
,babNw A

a



 


 (47) 

A final remark on the pre-assembly for  is that a,b,l,k,i,j needs to be only obtained 
for  b  a. A slight disadvantage is that the amount of values that one must store in a 
data sheet could be significant –  for an element of order no (yielding (no+1)2 basis 
functions) the amount of  coefficients is: 
  ),)()1()1((5.2 I

2
I

2
o

4
o nnnns   (48) 

which means that for an element of the order no = 4 and nI = 14 one needs to 
store maximally 341 250 values, which requires approximately 2.6 MB of 
memory. However, such an amount is insignificant in comparison to how much 
an FEM computation often requires. Also – the number of stored coefficients 
could be a lot smaller if occurrences where the multiplier of _

p_
q is 0 are not 

stored. A part of an exemplary data sheet of coefficients for a = 1, b = 1 for no = 
1 is presented in Figure 6. 
 

 
a=1, b=1 
 l=1, k=1  >empty< 
 l=2, k=1  >empty< 
 l=2, k=2 
  p=1, q=0-> -11.1111111111111 
  p=0, q=0-> -22.2222222222222 
 l=3, k=1  >empty< 
 l=3, k=2 
  p=0, q=1-> 11.1111111111111 
  p=1, q=0-> 11.1111111111111 
  p=0, q=0-> 33.3333333333333 
 l=3, k=3 
  p=0, q=1-> -11.1111111111111 
  p=0, q=0-> -22.2222222222222 
 l=4, k=1  >empty< 
 l=4, k=2 
  p=0, q=1-> 11.1111111111111 
  p=1, q=0-> -11.1111111111111 
  p=0, q=0-> -11.1111111111111 
 l=4, k=3 
  p=0, q=1-> -11.1111111111111 
  p=1, q=0-> 11.1111111111111 
  p=0, q=0-> -11.1111111111111 
 l=4, k=4 
  p=0, q=0-> -11.1111111111111 
 

 
Fig. 6. Data sheet containing the  coefficients for a = 1, b = 1 and no = 1, nI = 2 
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5. Summary 
 
 The pre-assembly for selected element type, used for an FEM analysis, 
allows to apply relatively simple equations and prepared auxiliary data sheets to 
perform the assembly of the system of equations. This has been presented on the 
example of the weak formulation generally describing a linear transient 
magnetic field problem. For the described case, if the pre-assembly had been 
performed, one only needs to possess the data sheets, with the values of the d, c 
and  coefficients, and apply the following equations to complete the assembly: 
 (20-22) and (27) for the evaluation of ,  and , 
 (32) for the d term, 
 (26) and (29) for , 
 (46) and (47) for . 
 The main advantages that could be gained from applying the pre-assembly are: 
 simplicity in the implementation of the auxiliary equations and data sheets 

when writing FEM codes, 
 a potential decrease in the time used for the assembly of the equations 

(especially useful for time-dependent analyses, where the meshing is 
performed for each time-step), 

 an assurance of an integration with good accuracy (based on a preceding 
approximation) of some expressions – like (11) (potentially – this could also 
be a great advantage in the future when the pre-assembly will be presented 
for curvilinear elements) as f is approximated a priori when one can globally 
check the accuracy of the approximation in a selected interval for r values. 
The paper has shown the formula needed to perform the pre-assembly. Its 

usefulness and efficiency for selected problems will be discussed in future 
papers. Further research will concern the pre-assembly for 3D elements and 
curvilinear elements. 
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