PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrocarbon generation modelling in the Permian and Triassic strata of the Polish Basin: implications for hydrocarbon potential assessment

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydrocarbon generation in the Zechstein Main Dolomite and Upper Triassic potential source rocks of the Polish Basin was investigated by 1-D thermal maturity modelling in 90 boreholes across the basin. This identified major zones potentially worthy of further exploration efforts. The maximum burial depth of the Zechstein Main Dolomite and Upper Triassic reached >5 km during the Late Cretaceous leading to maximum thermal maturity of organic matter. Hydrocarbon generation development reveals considerable differences between particular zones of the Zechstein Main Dolomite and Upper Triassic. The kerogen transformation ratio (TR) in the Zechstein Main Dolomite reached values approaching 100% along the basin axis. The TR in the Upper Triassic source rocks is generally lower than in the Zechstein Main Dolomite due to lesser burial. The Upper Triassic source rocks have the highest TR values (>50%) along the basin axis, in the area between boreholes Piła IG 1 and Piotrków Trybunalski IG 1, with the most pronounced zone in the Krośniewice Trough (i.e., between the Krośniewice IG 1 and Budziszewice IG 1 boreholes), where the TR reached >90%. The Zechstein Main Dolomite and Upper Triassic entered the oil window in the Late Triassic to Early–Middle Jurassic, respectively. Hydrocarbon generation continued until the Late Cretaceous, and was completed during tectonic inversion of the basin.
Rocznik
Strony
art. no. 20
Opis fizyczny
Bibliogr. 168 poz., map., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, Kraków 30-059, Poland
Bibliografia
  • 1. Aguilera, R., 2018. The uncertainty in the Transformation Ratio and its impact in Oil and Gas Exploration - Part I; https://www.linkedin.com/pulse/uncertainty-transformation-ratio-its-impact-oil-gas-roberto-aguilera/, access on 30 December 2022
  • 2. Bachleda-Curuś, T., Semyrka, R., 1990. The hydrocarbon balance for the Mesozoic sedimentary complex in the central part of the Polish Lowland (in Polish with English summary). Wydawnictwa AGH, Kraków.
  • 3. Bachleda-Curuś, T., Burzewski, W., Halat, Z., Semyrka, R., 1996. Hydrocarbon generation potential of sedimentary formations in the Western Pomerania. Oil and Gas News, 6: 163-170.
  • 4. Bachmann, G.H., Geluk, M.C., Warrington, G., Becker-Roman, A., Beutler, G., Hagdorn, H., Hounslow, M.W., Nitsch, E., Röhling, H.-G., Simon, T., Szulc, A., 2010. Triassic. In: Petroleum Geological Atlas of the Southern Permian Basin Area (eds. J.C. Doornenbal and A.G. Stevenson): 148-173. EAGE, Houten, Netherlands.
  • 5. Behar, F., Delhaye-Prat, V., Garel S., 2020. Detrital input quantification in lacustrine petroleum systems: an example of the pre-salt source rocks from the Lower Congo Basin (Congo). The Depositional Record, 7: 147-171; https://doi.org/10.1002/dep2.131
  • 6. Bohacs, K.M., Carroll, A.R., Neal, J.E., Mankiewicz, P., 2000. Lake-basin type, source potential, and hydrocarbon character: an integrated sequence- stratigraphic-geochemical framework. AAPG Studies in Geology, 46: 3-4; https://doi.org/10.1306/St46706C1
  • 7. Bohacs, K.M., Grabowski, G.J.J., Carroll, A.R., Mankiewicz, P.J., Miskellgerhardt, K.J., Schwalbach, J.R., Wegner, M.B., Simo, J.A., 2005. Production, destruction, and dilution: the many paths to source-rock development. SEPM Special Publication, 82: 61-101.
  • 8. Botor, D., 2011. One-dimensional modeling of gas generation processes in Carboniferous sediments from the deep part of Polish Rotliegend basin. Geology, Geophysics and Environment, 37: 503-516; https://doi.org/10.7494/geol.2011.37.4.503
  • 9. Botor, D., 2021. Burial and thermal history modeling of the Paleozoic-Mesozoic basement in the northern margin of the Western Outer Carpathians (case study from Pilzno-40 well, Southern Poland). Minerals, 11: 733; https://doi.org/10.3390/min11070733
  • 10. Botor, D., Papiernik, B., Maćkowski, T., Reicher, B., Kosakowski, P., Machowski, G., Górecki, W., 2013. Gas generation in Carboniferous source rocks of the Variscan Foreland Basin: implications for a charge history of Rotliegend deposits with natural gases. Annales Societatis Geologorum Poloniae, 83: 353-383.
  • 11. Botor, D., Anczkiewicz, A.A., Dunkl, I., Golonka, J., Paszkowski, M., Mazur, S., 2018. Tectonothermal history of the Holy Cross Mountains (Poland) in the light of low-temperature thermochronology. Terra Nova, 30: 270-278; https://doi.org/10.1111/ter.12336
  • 12. Botor, D., Golonka, J., Anczkiewicz, A. A., Dunkl, I., Papiernik, B., Zając, J., Guzy, P., 2019a. Burial and thermal history of the Lower Paleozoic petroleum source rocks in the SW margin of the East European Craton (Poland). Annales Societatis Geologorum Poloniae, 89: 31-62; https://doi.org/10.14241/asgp.2019.12
  • 13. Botor, D., Golonka, J., Zając, J., Papiernik, B., Guzy, P., 2019b. Petroleum generation and expulsion in the Lower Palaeozoic petroleum source rocks at the SW margin of the East European Craton (Poland). Annales Societatis Geologorum Poloniae, 89: 63-89; https://doi.org/10.14241/asgp.2019.11
  • 14. Botor, D., Mazur, S., Anczkiewicz, A.A., Dunkl, I., Golonka, J. 2021. Thermal history of the East European Platform margin in Poland based on apatite and zircon low-temperature thermochronology. Solid Earth, 12: 1899-1930; https://doi.org/10.5194/se-12-1899-2021
  • 15. Burley, S.D., 1993. Models of burial diagenesis for deep exploration in Jurassic fault traps of the Central and Northern North Sea. Petroleum Geology Conference Series, 4: 1353-1375; https://doi.org/10.1144/0041353
  • 16. Burnham, A.K., Peters, K.E., Schenk, O., 2016. Evolution of vitrinite reflectance models. In: AAPG Annual Convention and Exhibition, Calgary, Alberta Canada, June 19-22, 2016.
  • 17. Clark-Lowes, D.D., Kuzemko, N.C.J., Scott, D.A., 1987. Structure and petroleum prospectivity of the Dutch Central Graben and neighbouring platform areas. In: Proc. 3rd Conf. on Petroleum Geology of NW Europe (eds. J. Brooks and K.W. Glennie): 337-356. Graham & Trotman, London.
  • 18. Cornford, C., 1998. Source rocks and hydrocarbons of the North Sea. In: Petroleum geology of the North Sea: basic concepts and recent advances (ed. K.W. Glennie): 376-462. 4th ed., Oxford, United Kingdom, Blackwell Science Ltd.
  • 19. Dadlez, R., 2006. The Polish Basin-relationship between the crystalline, consolidated and sedimentary crust. Geological Quarterly, 50 (1): 43-58.
  • 20. Dadlez, R., Narkiewicz, M., Stephenson, R.A., Visser, M.T.M., Van Wees, J.D., 1995. Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. Tectonophysics, 252: 179-195; https://doi.org/10.1016/0040-1951(95)00104-2
  • 21. Dadlez, R., Marek, S., Pokorski, J., 1998. Paleogeographical Atlas of the Epicontinental Permian and Mesozoic of Poland. Państwowy Instytut Geologiczny, Warszawa.
  • 22. Do Couto, D., Garel, S., Moscariello, A., Bou Daher, S., Littke, R., Weniger, P., 2021. Origins of hydrocarbons in the Geneva Basin: insights from oil, gas and source rock organic geochemistry. Swiss Journal of Geosciences, 114, 11; https://doi.org/10.1186/s00015-021-00388-4
  • 23. Doornenbal, J.C., Stevenson, A.G. (eds), 2010. Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE, Houten, Netherlands.
  • 24. Doornenbal, J.C., Kombrink, H., Bouroullec, R. , Dalman, R.A.F., De Bruin, G., Geel, C. R., Houben, A.J.P., Jaarsma, B., Juez-Larré, J., Kortekaas, M., Mijnlieff, H.F., Nelskamp, S., Pharaoh, T.C., Ten Veen, J. H., Ter Borgh, M., Van Ojik, K., Verreussel, R.M.C.H., Verweij, J.M., Vis, G.J., 2019. New insights on subsurface energy resources in the Southern North Sea Basin area. Geological Society, Special Publications, 494: 233-268; https://doi.org/10.1144/SP494-2018-178
  • 25. Dyrka, I. (ed.), 2017. Ocena perspektywiczności geologicznej zasobów złóż węglowodorów oraz przygotowanie materiałów na potrzeby przeprowadzenia postępowania przetargowego w celu udzielenia koncesji na poszukiwanie i rozpoznawanie lub wydobywanie złóż węglowodorów Zadanie 22.5004.1502.02.0. Pakiet danych geologicznych dla postępowania przetargowego na poszukiwanie złóż węglowodorów Obszar przetargowy "Szamotuły - Poznań Północ" (in Polish). PIG Warszawa web data base, access on 11 January 2022.
  • 26. Eisbacher, G.H., Fielitz, W., 2010. Karlsruhe und seine Region. Sammlung Geologischer Führer, 103. Borntraeger, Stuttgart.
  • 27. Feist-Burkhardt, S., Götz, A.E., Szulc, J., Aigner, T., Borkhataria, R., Geluk, M., Haas, J., Hornung, J., Jordan, P., Kempf, O., Michalík, J., Nawrocki, J., Reinhardt, L., Ricken, W., Röhling, H.G., Ruffer, T., Török, A., Zuhlke, R., 2008. Triassic. In: The Geology of Central Europe (ed. T. McCann): 749-821. The Geological Society, London.
  • 28. Geluk, M., Mckie T., Kilhams, B., 2018. An introduction to the Triassic: current insights into the regional setting and energy resource potential of NW Europe. Geological Society Special Publications, 469: 139-147; https://doi.org/10.1144/SP469.1
  • 29. Geršlová, E., Opletal, V., Sýkorová, I., Sedláková, I., Geršl, M., 2015. A geochemical and petrographical characterization of organic matter in the Jurassic Mikulov Marls from the Czech Republic. International Journal of Coal Geology, 141-142: 42-50; https://doi.org/10.1016/j.coal.2015.03.002
  • 30. Grotek, I., 1998. Thermal maturity of organic matter in the Zechstein deposits of the Pol ish Lowlands area (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 165: 255-259.
  • 31. Grotek, I., 2006. Thermal maturity of organic matter from the sedimentary cover deposits from Pomeranian part of the TESZ, Baltic Basin and adjacent area (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 186: 253-270.
  • 32. Hantschel, T., Kauerauf, A.I., 2009. Fundamentals of basin and petroleum systems modelling. Springer, Heidelberg.
  • 33. Hunt, J.M., 1996. Petroleum Geochemistry and Geology, 2nd Edition. W.H. Freeman and Company.
  • 34. Isaksen, G.H., Bohacs, K.M., 1995. Geological controls of source rock geochemistry through relative sea level; Triassic, Barents Sea. In: Petroleum Source Rocks (ed. B.J. Katz): 25-50. Springer Berlin Heidelberg, Berlin, Heidelberg.
  • 35. Justwan, H., Dahl, B., Isaksen, G.H., Meisingset, I., 2005. Late and Middle Jurassic source facies and quality variations, South Viking Graben, North Sea. Journal of Petroleum Geology, 28: 241-268; https://doi.org/10.1111/j.1747-5457.2005.tb00082.x
  • 36. Karnkowski, P.H., 1996. Thermal history and hydrocarbon generation in the area of Dobrzyca structure, Western Pomerania, Poland (in Polish with English summary). Przegląd Geologiczny, 44: 349-357.
  • 37. Karnkowski, P.H., 1999a. Oil and Gas Deposits in Poland. Geological Society "Geos", Kraków.
  • 38. Karnkowski, P.H., 1999b. Origin and evolution of the Polish Rotliegend Basin. Polish Geological Institute Special Papers, 3: 1-93.
  • 39. Karnkowski, P.H., 2007a. Permian basin as a main exploration target in Poland. Przegląd Geologiczny, 55: 1003-1015.
  • 40. Karnkowski, P.H., 2007b. Petroleum provinces in Poland. Przegląd Geologiczny, 55: 1061-1067.
  • 41. Katz, B.J., 2005. Controlling factors on source rock development-a review of productivity, preservation, and sedimentation rate. SEPM, Special Publication, 82: 7-16.
  • 42. Katz, B., Lin, F., 2014. Lacustrine basin unconventional resource plays: key differences. Marine and Petroleum Geology, 56: 255-265; https://doi.org/10.1016/j.marpetgeo.2014.02.013
  • 43. Kiersnowski, H., 2013. Late Permian aeolian sand seas from the Polish Upper Rotliegend Basin in the context of palaeoclimatic periodicity. Geological Society Special Publications, 376: 431-456; http://dx.doi.org/10.1144/SP376.20
  • 44. Kiersnowski, H., (ed.) 2017. Ocena perspektywiczności geologicznej zasobów złóż węglowodorów oraz przygotowanie materiałów na potrzeby przeprowadzenia postępowania przetargowego w celu udzielenia koncesji na poszukiwanie i rozpoznawanie lub wydobywanie złóż węglowodorów - etap II. Zadanie no 22.5004.1502.08.0. Pakiet danych geologicznych do postępowania przetargowego na poszukiwanie złóż węglowodorów Obszar przetargowy "Piła" (in Polish). PIG Warszawa web data base, access on 10 January 2022.
  • 45. Kiersnowski, H., Tomaszczyk, M., 2010. Permian dune fields as geomorphic traps for gas accumulation: Upper Rotliegend-Zechstein Basin, SW Poland. In: 18th International Sedimentological Congress Abstracts Volume, Mendoza (eds. E. Schwarz, S. Georgieff, E. Piovano and D. Ariztegui): 944.
  • 46. Kiersnowski, H., Paul, J., Peryt, T.M., Smith, D.B., 1995. Facies, paleogeography and sedimentary history of the Southern Permian Basin in Europe. In: The Permian of Northern Pangea - Sedimentary Basins and Economic Resources (eds. P.A. Scholle, T.M. Peryt and D.S. Ulmer-Scholle): 119-136. Springer-Verlag, Berlin.
  • 47. Kiersnowski, H., Buniak, A., Kuberska, M., Srokowska-Okońska, A., 2010. Tight gas accumulations in Rotliegend sandstones of Poland (in Polish with English summary). Przegląd Geologiczny, 58: 335-346.
  • 48. Kilhams, B., Kukla, P.A., Mazur, S., Mckie, T., Mijnlieff, H.F. Van Ojik, K., Rosendaal, E., 2018a. Mesozoic resource potential in the Southern Permian Basin area: the geological key to exploiting remaining hydrocarbons whilst unlocking geothermal potential. Geological Society Special Publications, 469: 1-18; https://doi.org/10.1144/SP469.26
  • 49. Kilhams, B., Stevanovic, S., Nicolai, C., 2018b. The 'Buntsandstein' gas play of the Horn Graben (German, Danish offshore): dry well analysis, remaining hydrocarbon potential. Geological Society Special Publications, 469: 19-28; https://doi.org/10.1144/SP469.5
  • 50. Kortekaas, M., Böker, U., Van Der Kooij, C., Jaarsma, B., 2018. Lower Triassic reservoir development in the Dutch northern offshore. Geological Society Special Publications, 469: 56-77; https://doi.org/10.1144/SP469.19
  • 51. Kosakowski, P., Krajewski, M., 2014. Hydrocarbon potential of the Zechstein Main Dolomite in the western part of the Wielkopolska platform, SW Poland: new sedimentological and geochemical data. Marine and Petroleum Geology, 49: 99-120; https://doi.org/10.1016/j.marpetgeo.2013.10.002
  • 52. Kosakowski, P., Krajewski, M., 2015. Hydrocarbon potential of the Zechstein Main Dolomite (Upper Permian) in western Poland: relation to organic matter and facies characteristics. Marine and Petroleum Geology, 68: 675-694; https://doi.org/10.1016/j.marpetgeo.2015.03.026
  • 53. Kosakowski, P., Wróbel, M., Poprawa, P., 2010. Hydrocarbon generation and expulsion modelling of the lower Paleozoic source rocks in the Polish part of the Baltic region. Geological Quarterly, 54 (2): 241-256.
  • 54. Kosakowski, P., Wójcik-Tabol, P., Kowalski, A., Zacharski, J., 2015. Jurassic petroleum system in the Polish Lowlands (central Poland) - organic geochemical and numerical modelling approach. 77th EAGE Conference and Exhibition 2015 Madrid, Spain, 1-4 June 2015, W P7 02: 1-6.
  • 55. Kotarba, M., Wagner, R., 2007. Generation potential of the Zechstein Main Dolomite (Ca2) carbonates in the Gorzów Wielkopolski-Międzychód-Lubiatów area: geological and geochemical approach to microbial-algal source rock. Przegląd Geologiczny, 55: 1025-1036.
  • 56. Kotarba, M.J., Pokorski, J., Grelowski, C., Kosakowski, P., 2005. Origin of natural gases accumulated in Carboniferous and Rotliegend strata on the Baltic part of the Western Pomerania (in Polish with English summary). Przegląd Geologiczny, 53: 425-433.
  • 57. Kotarba, M.J., Peryt, T.M., Kosakowski, P., Więcław, D., 2006. Organic geochemistry, depositional history and hydrocarbon generation modelling of the Upper Permian Kupferschiefer and Zechstein Limestone strata in south-west Poland. Marine and Petroleum Geology, 23: 371-386; http://dx.doi.org/10.1016/j.marpetgeo.2005.10.003
  • 58. Kotarba, M.J., Więcław, D., Bilkiewicz, E., Dziadzio, P., Kowalski, A., 2017a. Genetic correlation of source rocks and natural gas in the Polish Outer Carpathians and Paleozoic-Mesozoic basement east of Kraków (Southern Poland). Geological Quarterly, 61 (4): 795-824; https://doi.org/10.7306/gq.1367
  • 59. Kotarba, M.J., Bilkiewicz, E., Hałas, S., 2017b. Mechanisms of generation of hydrogen sulphide, carbon dioxide and hydrocarbon gases from selected petroleum fields of the Zechstein Main Dolomite carbonates of the western part of Polish Southern Permian Basin: Isotopic and geological approach. Journal of Petroleum Science and Engineering, 157: 380-391; https://doi.org/10.1016/j.petrol.2017.07.015
  • 60. Kotarba, M.J., Bilkiewicz, E., Kosakowski, P., 2020. Origin of hydrocarbon and non-hydrocarbon (H2S, CO2 and N2) components of natural gas accumulated in the Zechstein Main Dolomite carbonate reservoir of the western part of the Polish sector of the Southern Permian Basin. Chemical Geology, 554: 119807; https://doi.org/10.1016/j.chemgeo.2020.119807
  • 61. Kovalevych, V.M., Peryt, T.M., Shanina, S.N., Więcław, D., Lytvyniuk, S.F., 2008. Geochemical aureoles around oil and gas accumulations in the Zechstein (Upper Permian) of Poland: Analysis of fluid inclusions in halite and bitumens in salt. Journal of Petroleum Geology, 31: 245-262; http://dx.doi.org/10.1111/j.1747-5457.2008.00419.x
  • 62. Kowalska, S., Wójtowicz, A., Hałas, S., Wemmer, K., Mikołajewski, Z., Buniak, A., 2019. Thermal history of Lower Palaeozoic rocks from the East European Platform margin of Poland based on K-Ar age dating and illite-smectite palaeothermometry. Annales Societatis Geologorum Poloniae, 89: 481-509; https://doi.org/10.14241/asgp.2019.21
  • 63. Kozłowska, A., Poprawa, P., 2004. Diagenesis of the Carboniferous clastic sediments of the Mazowsze region and the northern Lublin region related to their burial and thermal history (in Polish with English summary). Przegląd Geologiczny, 52: 491-500.
  • 64. Krajewski, K.P., 2013. Organic matter-apatite-pyrite relationships in the Botneheia Formation (Middle Triassic) of eastern Svalbard: relevance to the formation of petroleum source rocks in the NW Barents Sea shelf. Marine and Petroleum Geology, 45: 69-105; https://doi.org/10.1016/j.marpetgeo.2013.04.016
  • 65. Kuberska, M., Kiersnowski, H., Poprawa, P., Kozłowska, A., 2021. Rotliegend sedimentary rocks in the Kutno 2 well under conditions of a pos tulated Jurassic thermal event and high overpressure - a petrographic study (in Polish with English summary). Przegląd Geologiczny, 69: 365-373; https://doi.org/10.7306/2021.19
  • 66. Kus, J., Cramer, B., Kockel, F., 2005. Effects of a Cretaceous structural inversion and a postulated high heat flow event on petroleum system of the western Lower Saxony Basin and the charge history of the Apeldorn gas field. Geologie en Mijnbouw, 84: 3-24; https://doi.org/10.1017/S0016774600022873
  • 67. Krzywiec, P., 2002. Mid-Polish Trough inversion - seismic examples, main mechanisms and its relationship to the Alpine-Carpathian collision. European Geosciences Union, Stephan Mueller Special Publication Series, 1: 151-165.
  • 68. Krzywiec, P., 2004. Triassic evolution of the Kłodawa salt structure: Basement-controlled salt tectonics within the Mid-Polish Trough (central Poland). Geological Quarterly, 48 (2): 123-134.
  • 69. Krzywiec, P., 2006a. Triassic-Jurassic evolution of the Pomeranian segment of the Mid-Polish Trough - basement tectonics and sedimentary patterns. Geological Quarterly, 50 (1): 139-150.
  • 70. Krzywiec, P., 2006b. Structural inversion of the Pomeranian and Kuiavian segments of the Mid-Polish Trough - lateral variations in timing and structural style. Geological Quarterly, 50 (1): 151-168.
  • 71. Krzywiec, P., 2009. Devonian-Cretaceous repeated subsidence and uplift along the Teisseyre-Tornquist zone in SE Poland - insight from seismic data interpretation. Tectonophysics, 475: 142-159; https://doi.org/10.1016/j.tecto.2008.11.020
  • 72. Krzywiec, P., Peryt, T.M., Kiersnowski, H., Pomianowski, P., Czapowski, G., Kwolek K., 2017a. Permo-Triassic evaporites of the Polish Basin and their bearing on the tectonic evolution and hydrocarbon system, an Overview. In: Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins (eds. J.I. Soto, J.F. Flinch and G. Tari): 243-261; https://doi.org/10.1016/B978-0-12-809417-4.00012-4
  • 73. Krzywiec, P., Gągała, £., Mazur, S., Słonka, £., Kufrasa, M., Malinowski, M., Pietsch, K., Golonka, J., 2017b. Variscan deformation along the Teisseyre-Tornquist Zone in SE Poland: thick-skinned structural inheritance or thin-skinned thrusting? Tectonophysics, 718: 83-91; https://doi.org/10.1016/j.tecto.2017.06.008
  • 74. Krzywiec, P., Stachowska, A., Stypa, A., 2018. The only way is up - on Mesozoic uplifts and basin inversion events in SE Poland. Geological Society Special Publications, 469: 33-57; https://doi.org/10.1144/SP469.14
  • 75. Kutek, J., 1994. Jurassic tectonic events in south-eastern cratonic Poland. Acta Geologica Polonica, 44: 167-221.
  • 76. Kutek, J., 2001. The Polish-Mesozoic rift basin. Memoirs du Muséum National d'Histoire Naturelle, 186: 213-236.
  • 77. Kutek, J., Głazek, J., 1972. The Holy Cross area, central Poland, in the Alpine cycle. Acta Geologica Polonica, 22: 603-653.
  • 78. Labus, K., Tarkowski, R., 2022. Modeling hydrogen-rock-brine interactions for the Jurassic reservoir and cap rocks from Polish Lowlands. International Journal of Hydrogen Energy, 47: 10947-10962; https://doi.org/10.1016/j.ijhydene.2022.01.134
  • 79. Labus, K., Tarkowski, R., Wdowin, M., 2014. Modeling gas-rock-water interactions in carbon dioxide storage capacity assessment: A case study of Jurassic sandstones in Poland. International Journal of Environmental Science and Technology, 12: 2493-2502; https://doi.org/10.1007/s13762-014-0652-6
  • 80. Lamarche, J., Scheck, M., Lewerenz, B., 2003. Heterogeneous tectonic inversion of the Mid-Polish Trough related to crustal architecture, sedimentary patterns and structural inheritance. Tectonophysics, 373: 75-92; https://doi.org/10.1016/S0040-1951(03)00285-3
  • 81. Lutz, M., Cleintuar, M., 1999. Geological results of a hydrocarbon exploration campaign in the southern Upper Rhine Graben. Bulletin for Applied Geology, 4: 3-80.
  • 82. Lutz, R., Klitzke, P., Weniger, P., Blumenberg, M., Franke, D., Lutz, R., Ehrhardt, W., Berglar, K., 2021. Basin and petroleum systems modelling in the northern Norwegian Barents Sea. Marine and Petroleum Geology, 130: 105128; https://doi.org/10.1016/j.marpetgeo.2021.105128
  • 83. Łuszczak, K., Wyglądała, M., Śmigielski, M., Waliczek, M., Matyja, B.A., Konon, A., Ludwiniak, M., 2020. How to deal with missing overburden - investigating Late Cretaceous exhumation of the Mid-Polish anticlinorium by a multi-proxy approach. Marine and Petroleum Geology, 114: 104229; https://doi.org/10.1016/j.marpetgeo.2020.104229
  • 84. Maćkowski, T., 2005. Wpływ dolnopermskiego wulkanizmu na stopień przeobrażenia termicznego karbońskich skał macierzystych na obszarze monokliny przedsudeckiej (in Polish). In: Sprawozdania z Semianariów Naukowych AGH ZSE (ed. J. Kuśmierek): 120-122, Kraków.
  • 85. Majorowicz, J., 2021. Review of the heat flow mapping in Polish sedimentary basin across different tectonic terrains. Energies, 14: 6103; https://doi.org/10.3390/en14196103
  • 86. Majorowicz, J., Wybraniec, S., 2011. New terrestrial heat flow map of Europe after regional paleoclimatic correction application. International Journal of Earth Sciences, 100: 881-887; https://doi.org/10.1007/s00531-010-0526-1
  • 87. Majorowicz, J.A., Marek S., Znosko J., 1984. Paleogeothermal gradients by vitrinite reflectance data and their relation to the present geothermal gradient patterns of the Polish Lowland. Tectonophysics, 103: 141-156; https://doi.org/10.1016/0040-1951(84)90079-9
  • 88. Mann, U., Zweigel, J., 2008. Modeling source rock distribution and quality variations: the OF-Mod approach. IAS Special Publication, 40: 239-274.
  • 89. Marek S., Znosko J., 1972. Tectonics of the Kujawy Region (in Polish with English summary). Kwartalnik Geologiczny, 16 (1): 1-18.
  • 90. Marek, S., Pajchlowa, M., (eds.), 1997. Epikontynentalny perm i mezozoik w Polsce (in Polish). Prace Państwowego Instytutu Geologicznego, 153: 1-284.
  • 91. Marynowski, L., Simoneit, B.R.T., 2009. Widespread Upper Triassic-Lower Jurassic wildfire records from Poland: evidence from charcoal and pyrolytic polycyclic aromatic hydrocarbons. Palaios, 24: 785-798; https://www.jstor.org/stable/40606423
  • 92. Marynowski, L., Wyszomirski, P., Kurkiewicz, S., 2006. The characteristics of organic matter from the Triassic clays of NW margin of the Holy Cross Mts. (Poland) - preliminary report. Mineralogia, 37: 113-122; https://doi.org/10.2478/v10002-007-0003-z
  • 93. Maystrenko, Y., Bayer, U., Brink, H.J., Littke, R., 2008. The Central European Basin System - an overview. In: Dynamics of Complex Intracontinental Bas ins: The Central European Basin System (eds. R. Littke, U. Bayer, D. Gajewski and S. Nelskamp): 15-34. Springer, Berlin.
  • 94. Mazur, S., Scheck-Wenderoth, M., Krzywiec, P., 2005. Different modes of the late Cretaceous-early Tertiary inversion in the north German and Polish Basins. International Journal of Earth Sciences, 94: 782-798; https://doi.org/10.1007/s00531-005-0016-z
  • 95. Mazur, S., Aleksandrowski, P., Kryza, R., Oberc-Dziedzic, T., 2006. The Variscan Orogen in Poland. Geological Quarterly, 50 (1): 89-11.
  • 96. Mazur, S., Malinowski, M., Maystrenko, Y.P., Gągała, Ł., 2021. Pre-existing lithospheric weak zone and its impact on continental rifting - The Mid-Polish Trough, Central European Basin System. Global and Planetary Change, 198: 103417; https://doi.org/10.1016/j.gloplacha.2021.103417
  • 97. Mikołajewski, Z., Grelowski, C., Kwolek, K., Czechowski, F., Słowakiewicz, M., Matyasik, I., Grotek, I., 2019. Hydrocarbon habitat in the Zielin Late Permian isolated carbonate platform, western Poland. Facies, 65: 215-225; https://doi.org/10.1007/s10347-018-0544-1
  • 98. Merk, A., Bjorey, M., 1984. Mesozoic source rocks on Svalbard. In: Petroleum Geology of the North European Margin (ed. A.M. Spencer): 371-382. Norwegian Petroleum Society/Graham & Trotman, London.
  • 99. Nemčok, M., Henk, A., 2006. Oil reservoirs in foreland basins charged by thrustbelt source rocks: insights from numerical stress modeling and geometric balancing in the West Carpathians. Geological Society Special Publications, 253: 415-428; https://doi.org/10.1144/GSL.SP.2006.253.01.22
  • 100. Nielsen, L.H., 2003. Late Triassic-Jurassic development of the Danish Basin and the Fennoscandian Border Zone, southern Scandinavia. Geological Survey of Denmark and Greenland Bulletin, 1: 459-526.
  • 101. Ogg, J.G., Ogg, G., Gradstein, F.M., 2008. The Concise Geologic Time Scale. Cambridge University Press, Cambridge.
  • 102. Papiernik, B., Botor, D., Golonka, J., Porębski, S.J., 2019. Unconventional hydrocarbon prospects in Ordovician and Silurian mudrocks of the East European Craton (Poland): insight from three-dimensional modelling of total organic carbon and thermal maturity. Annales Societatis Geologorum Poloniae, 89: 511-533; https://doi.org/10.14241/asgp.2019.26
  • 103. Pepper, A.S., Corvi, P.J., 1995. Simple kinetic models of petroleum formation. Part III: modelling an open system. Marine and Petroleum Geology, 12: 417-452; https://doi.org/10.1016/0264-8172(95)96904-5
  • 104. Peryt, T.M., Peryt, D., 2021. Foraminiferal micro-buildups ("reefs") in the Wuchiapingian basin facies of the basal Zechstein carbonates in western Poland. Journal of Palaeogeography, 10: 463-481; https://doi.org/10.1016/j.jop.2021.08.001
  • 105. Peryt, T.M., Geluk, M.C., Mathiesen, A., Paul, J., Smith, K., 2010. Zechstein. In: Petroleum Geological Atlas of the Southern Permian Basin Area (eds. J.C. Doornenbal and A.G. Stevenson): 123-147. EAGE Publications, Houten.
  • 106. Peters, K.E., Moldowan, J.M., Driscole, A.R., Demaison, G.J., 1989. Origin of Beatrice oil-field by co-sourcing from Devonian and Middle Jurassic Source Rocks, Inner Moray Firth, United Kingdom. AAPG Bulletin, 73: 454-471; https://doi.org/10.1306/44B49FCE-170A-11D7-8645000102C1865D
  • 107. Petersen, H.I., Hertle, M., 2018. Review of the coaly source rocks and generated petroleum in the Danish North Sea: an underexplored Middle Jurassic petroleum system? Journal of Petroleum Geology, 41: 135-154; https://doi.org/10.1111/jpg.12697
  • 108. Petersen, H.I., Nytoft, H.P., Nielsen, L.H., 2004. Characterisation of oil and potential source rocks in the northeastern Song Hong Basin, Vietnam: indications of a lacustrine-coal sourced petroleum system. Organic Geochemistry, 35: 493-515; https://doi.org/10.1016/j.orggeochem.2004.01.011
  • 109. Petersen, H.I., Nielsen, L.H. Bojesen-Koefoed, J.A., Mathiesen, A., Kristensen, L., Dalhoff, F., 2008. Evaluation of the quality, thermal maturity and distribution of potential source rocks in the Danish part of the Norwegian-Danish Basin. Geological Survey of Denmark and Greenland Bulletin, 16.
  • 110. Petersen, H.I., Hertle, M., Sulsbrück, H., 2017. Upper Jurassic-lowermost Cretaceous marine shale source rocks (Farsund Formation), North Sea: kerogen composition and quality and the adverse effect of oil-based mud contamination on organic geochemical analyses. International Journal of Coal Geology, 173: 26-39; https://doi.org/10.1016/j.coal.2017.02.006
  • 111. Pieńkowski, G., Hesselbo, S.P., Barbacka, M., Leng, M.L., 2020. Non-marine carbon-isotope stratigraphy of the Triassic-Jurassic transition in the Polish Basin and its relationships to organic carbon preservation, pCO2 and palaeotemperature. Earth-Science Reviews, 210, 103383; https://doi.org/10.1016/j.earscirev.2020.103383
  • 112. Piwocki, M., 2004. Paleogen. In: Budowa geologiczna Polski Tom I, Stratygrafia, cz. 3a, Kenozoik, Paleogen i Neogen (eds. T. Peryt and M. Piwocki): 22-71 . Państwowy Instytut Geologiczny.
  • 113. Pletsch, T., Appel, J., Botor, D., Clayton, C.J., Duin, E.J.T., Faber, E., Górecki, W., Kombrink, H., Kosakowski, P., Kuper, G., Kus, J., Lutz, R., Mathiesen, A., Ostertag-Henning, C., Papiernik, B., Van Bergen, F., 2010. Petroleum Generation and Migration. In: Petroleum Geological Atlas of the Southern Permian Basin Area (eds. J.C. Doornenbal and A.G. Stevenson): 225-253. EAGE Publications, Houten.
  • 114. Poprawa, P., Grotek, I., 2004. Thermal evolution of the Permian-Mesozoic Polish Basin - model predictions confronted with analytical data. Bollettino di Geofisica, teorica ed applicata, 45: 258-261.
  • 115. Poprawa, P., Andriessen, P., 2006. Wstępne wyniki termochronologii trakowej na apatytach dla północnej i centralnej części basenu polskiego (in Polish). Prace Państwowego Instytutu Geologicznego, 186: 271-292.
  • 116. Poprawa, P., Kiersnowski, H., 2008. Potential for shale gas and tight gas exploration in Poland (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 429: 145-152.
  • 117. Poprawa, P., Kiersnowski, H., 2010. Tight gas reservoirs in Poland. (In Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 439: 173-180.
  • 118. Poprawa, P., Grotek, I., Żywiecki, M.M., 2005. Impact of the Permian magmatic activity on the thermal maturation of the Carboniferous sediments in the outer Variscan orogen (SW Poland). Mineralogical Society of Poland, Special Papers, 26: 253-259.
  • 119. Powell, T.G., 1986. Petroleum geochemistry and depositional setting of lacustrine source rocks. Marine and Petroleum Geology, 3: 200-219.
  • 120. Pożaryski, W., Brochwicz-Lewiński, W., 1978. On the Polish Trough. Geologie en Mijnbouw, 57: 545-557.
  • 121. Reijers, T.J.A., 2012. Sedimentology and diagenesis as 'hydrocarbon exploration tools' in the Late Permian Zechstein-2 Carbonate Member (NE Netherlands). Geologos, 18: 163-195; https://do.org/10.2478/v10118-012-0009-x
  • 122. Reinhardt, L., Ricken, W.. 2000. The stratigraphic and geochemical record of playa cycles: monitoring a Pangaean monsoon-like system (Triassic, Middle Keuper, Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 161: 205-227; https://doi.org/10.1016/S0031-0182(00)00124-3
  • 123. Resak, M., Narkiewicz, M., Littke, R., 2008. New basin modelling results from the Polish part of the Central European Basin system (Pomerania): implications for the Late Cretaceous-Early Paleogene structural inversion. International Journal of Earth Sciences, 97: 955-972; https://doi.org/10.1007/s00531-007-0246-3
  • 124. Resak, M., Glasmacher, U.A., Narkiewicz, M., Littke, R., 2010. Maturity modelling integrated with apatite fission-track dating: implications for the thermal history of the Mid-Polish Trough (Poland). Marine and Petroleum Geology, 27: 108-115; https://doi.org/10.1016/j.marpetgeo.2009.06.002
  • 125. Rodrigues Duran, E., di Primio, R., Anka, Z., Stoddart, D., Horsfield, B., 2013a. Petroleum system analysis of the Hammerfest Basin (southwestern Barents Sea): comparison of basin modelling and geochemical data. Organic Geochemistry, 63: 105-121; https://doi.org/10.1016/j.orggeochem.2013.07.011
  • 126. Rodrigues Duran, E., di Primio, R., Anka, Z., Stoddart, D., Horsfield, B., 2013b. 3D-basin modelling of the Hammerfest Basin (southwestern Barents Sea): a quantitative assessment of petroleum generation, migration and leakage. Marine and Petroleum Geology, 45: 281-303; https://doi.org/10.1016/j.marpetgeo.2013.04.023
  • 127. Rowan, M., Krzywiec, P., 2014. The Szamotuły salt diapir and Mid-Polish Trough: Decoupling during both Triassic-Jurassic rifting and Alpine inversion. Interpretation, 2: SM1-SM18; https://doi.org/10.1190/INT-2014-0028.1
  • 128. Schad, A., 1962. Voraussetzungen für die Bildung von Erdöllagerstätten im Rheingraben. Abhandlungen des Geologischen Landesamt Baden-Württemberg, 4: 29-40.
  • 129. Scheck-Wenderoth, M., Lamarche, J., 2005. Crustal memory and basin evolution in the Central European Basin System - new insights from a 3D structural model. Tectonophysics, 397: 143-165; https://doi.org/10.1016/j.tecto.2004.10.007
  • 130. Scheck-Wenderoth, M., Krzywiec, P., Zülke, R., Maystrenko, Y., Frizheim, N., 2008. Permian to Cretaceous tectonics. In: The Geology of Central Europe, part 2, Mesozoic and Cenozoic (ed. T. McCann): 999-1030. Geological Society of London, London.
  • 131. Schito, A., Andreucci, B., Aldega, L., Corrado, S., Di Paolo, L., Zattin, M., Szaniawski, R., Jankowski, L., Mazzoli, S., 2018. Burial and exhumation of the western border of the Ukrainian Shield (Podolia): a multi-disciplinary approach. Basin Research, 30: 532-549; https://doi.org/10.1111/bre.12235
  • 132. Schobben, M., Gravendyck, J., Mangels, F., Struck, U., Bussert, R., Kürschner, W.M., Korn, D., Sander, P.M., Aberhan, M., 2019. A comparative study of total organic carbon-S13C signatures in the Triassic-Jurassic transitional beds of the Central European Basin and western Tethys shelf seas. Newsletters on Stratigraphy, 52: 461-486; https://doi.org/10.1127/nos/2019/0499
  • 133. Schovsbo, N.H., Jakobsen, F., 2019. Review of hydrocarbon potential in East Denmark following 30 years of exploration activities. GEUS Bulletin, 43, 2019430105; https://doi.org/10.34194/GEUSB-201943-01-05
  • 134. Słowakiewicz, M., Mikołajewski, Z., 2011. Upper Permian Main Dolomite microbial carbonates as potential source rocks for hydrocarbons (W Poland). Marine and Petroleum Geology, 28: 1572-1591; https://doi.org/10.1016/j.marpetgeo.2011.04.002
  • 135. Słowakiewicz, M., Blumenberg, M., Więcław, D., Röhling, H.-G., Scheeder, G., Hindenberg, K., Leśniak, A., Idiz, E.F., Tucker, M.E., Pancost, R.D., Kotarba, M.J., Gerling, J.P., 2018. Zechstein Main Dolomite oil characteristics in the Southern Permian Basin: I. Polish and German sectors panel. Marine and Petroleum Geology, 93: 356-375, https://doi.org/10.1016/j.marpetgeo.2018.03.023
  • 136. Sowiżdżał, A., Semyrka, R., 2016. Analyses of permeability and porosity of sedimentary rocks in terms of unconventional geothermal resource explorations in Poland. Geologos, 22: 149-163; https://doi.org/10.1515/logos-2016-0015
  • 137. Sowiżdżał, A., Papiernik, B., Machowski, G., Hajto, M., 2013. Characterization of petrophysical parameters of the Lower Triassic deposits in a prospective location for enhanced geothermal system (central Poland). Geologial Quarterly, 57 (4): 729-744; https://doi.org/10.7306/gq.1121
  • 138. Stephenson, R. A., Narkiewicz, M., Dadlez, R., Van Wees, J.D., Andriessen, P., 2003. Tectonic subsidence modelling of the Polish Basin in the light of new data on crustal structure and magnitude of inversion. Sedimentary Geology, 156: 59-70; https://doi.org/10.1016/j.sedgeo.2013.10.008
  • 139. Sweeney, J.J., Burnham, A.K., 1990. Evaluation of a simple model of vitrinite reflectance (EASY%Ro) based on chemical kinetics. AAPG Bulletin, 74: 1559-1570; https://doi.org/10.1306/0C9B251F-1710-11D7-8645000102C1865D
  • 140. Szulc, J., 2000. Middle Triassic evolution of the northern Peri-Tethys area as influenced by early opening of the Tethys ocean. Annales Societatis Geologorum Poloniae, 70: 1-48.
  • 141. Szulc, J., 2007. Chronological outline of evolution of the eastern Germanic Basin in late Ladinian - Rhaetian times. International Workshop on the Triassic of southern Poland September 3-8, 2007 Fieldtrip Guide.
  • 142. Szurlies, M., 2020. Magnetostratigraphy of the Zechstein: Implications for the Late Permian geological time-scale. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 89: 129-143.
  • 143. Tarkowski, R., Wdowin, M., 2011. Petrophysical and mineralogical research on the Influence of CO2 injection on Mesozoic reservoir and caprocks from the Polish Lowlands. Oil and Gas Science and Technology - Rev. IFP Energies Nouvelles, 66: 137-150; https://doi.org/10.2516/ogst/2011005
  • 144. Tommeras, A., Mann, U., 2008. Improved hydrocarbon charge prediction by source-rock modeling. Petroleum Geoscience, 14: 291-299; https://doi.org/10.1144/1354-079308-766
  • 145. Tyson, R.V., 2001. Sedimentation rate, dilution, preservation and total organic carbon: some results of a modelling study. Organic Geochemistry, 32: 333-339; https://doi.org/10.1016/S0146-6380(00)00161-3
  • 146. Tyson, R.V., 2005. The "productivity versus preservation" controversy: cause, flaws, and resolution. SEPM Special Publication, 82: 17-33.
  • 147. Toboła, T., Botor, D., 2020. Raman spectroscopy of organic matter and rare minerals in the Kłodawa Salt Dome (Central Poland) cap-rock and Triassic cover - indicators of hydrothermal solution migration. Spectrochimica Acta, Part A, Molecular and Biomolecular Spectroscopy, 231, 118121; https://doi.org/10.1016/j.saa.2020.118121
  • 148. Underhill, J.R., Richardson, N., 2022. Geological controls on petroleum plays and future opportuni ties in the North Sea Rift Super Basin. AAPG Bulletin, 106: 573-631; https://doi.org/10.1306/07132120084
  • 149. Van Wees, J.D., Stephenson, R.A., Ziegler, P.A., Bayer, U., McCann, T., Dadlez, R., Gaupp, R., Narkiewicz, M., Bitzer, F., Scheck, M., 2000. On the origin of the Southern Permian Basin, Central Europe. Marine and Petroleum Geology, 17: 43-59; https://doi.org/10.1016/S0264-8172(99)00052-5
  • 150. Vigran, J.O., Merk, A., Forsberg, A.W., Weiss, H.M., Weitschat, W., 2008. Tasmanites algae-contributors to the Middle Triassic hydrocarbon source rocks of Svalbard and the Barents shelf. Polar Research, 27, 360-371; https://doi.org/10.1111/j.1751- 8369.2008.00084
  • 151. von Eynatten, H., Kley, J., Dunkl, I., Hoffmann, V.E., Simon, A., 2021. Late Cretaceous to Paleogene exhumation in central Europe - localized inversion vs. large-scale domal uplift. Solid Earth, 12: 935-958; https://doi.org/10.5194/se-12-935-2021
  • 152. Wagner, M., 1999. Vitrinite reflectance in se lected boreholes from the Polish Basin (Polish Lowland). Unpublished report, AGH (in Polish).
  • 153. Wagner, R., 1994. Stratigraphy and evolution of the Zechstein Basin in the Polish Lowland (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 146: 1-71.
  • 154. Wagner, R., 2001. Fauna i flora w basenie permskim (in Polish). In: Budowa geologiczna Polski 3, Młodszy Paleozoik, Perm (eds. M. Pajchlowa and R. Wagner): 16-18.
  • 155. Waples, D.W., 1980. Time and temperature in petroleum formation: application of Lopatin's method to petroleum exploration. AAPG Bulletin, 64: 916-926; https://doi.org/10.1306/2F9193D2-16CE-11D7-8645000102C1865D
  • 156. Waples, D., Kamata, H., Suizu, M., 1992. The art of the maturity modeling - overview of methods. AAPG Bulletin, 76: 31-46; https://doi.org/10.1306/BDFF875E-1718-11D7-8645000102C1865D
  • 157. Wesenlund, F., Grundvag, S.A., Sjeholt-Engelschien, V., Thießen, O., Pedersen, J.H., 2021. Linking facies variations, organic carbon richness and bulk bitumen content - a case study of the organic-rich Middle Triassic shales from eastern Svalbard. Marine and Petroleum Geology, 132: 105168; https://doi.org/10.1016/j.marpetgeo.2021.105168
  • 158. Więcław, D., 2016. Habitat and hydrocarbon potential of the Kimmeridgian strata in the central part of the Polish Lowlands. Geological Quarterly, 60 (1): 192-210; https://doi.org/10.7306/gq.1260
  • 159. Wilczek, T., 1986. Assessment of the possibility of the hydrocarbon generation in the Mesozoic source rocks of Polish Basin (in Polish with English summary). Przegląd Geologiczny, 34: 496--502.
  • 160. Wójcik, K., Zacharski, J., Łojek, M., Wróblewska, S., Kiersnowski, H., Waśkiewicz, K., Wójcicki, A., Laskowicz, R., Sobień, K., Peryt, T., Chylińska-Macios, A., Sienkiewicz, J., 2022. New opportunities for oil and gas exploration in Poland-a review. Energies, 15: 1739; https://doi.org/10.3390/en15051739
  • 161. Wygrala, B.P., 1989. Integrated study of an oil field in the southern Po Basin, northern Italy. Berichte der Kernforschungsanlage Jülich, No 2313, Ph.D. Thesis, University of Cologne, Germany.
  • 162. Zakrzewski, A., Kosakowski, P., Waliczek, M., Kowalski, A., 2020. Polycyclic aromatic hydrocarbons in Middle Jurassic sediments of the Polish Basin provide evidence for high-temperature palaeo-wildfires. Organic Geochemistry, 145: 104037; https://doi.org/10.1016/j.orggeochem.2020.104037
  • 163. Zakrzewski, A., Waliczek, M., Kosakowski, P., Pańczak, J., 2022a. Lower Jurassic in the central part of the Polish Basin - Geochemical and petrological approach, Marine and Petroleum Geology, 146: 105922; https://doi.org/10.1016/j.marpetgeo.2022.105922
  • 164. Zakrzewski, A., Waliczek, M., Kosakowski, P., 2022b. Geochemical and petrological characteristics of the Middle Jurassic organic-rich siliciclastic sediments from the central part of the Polish Basin. International Journal of Coal Geology, 255: 103986; https://doi.org/10.1016/j.coal.2022.103986
  • 165. Ziegler, P.A., 1990a. Collision related intra-plate compression deformations in Western and Central Europe. Journal of Geodynamics, 11: 357-388; https://doi.org/10.1016/0264-3707(90)90017-O
  • 166. Ziegler, P.A., 1990b. Geological Atlas of Western and Central Europe. 2nd ed. Shell Internationale Petroleum Mij. BV and Geological Society of London.
  • 167. Zielinski, G.W., Poprawa, P., Szewczyk, J., Grotek, I., Kiersnowski, H., Zielinski, R.L.B., 2012. Thermal effects of Zechstein salt and the Early to Middle Jurassic hydrothermal event in the central Polish Basin. AAPG Bulletin, 96: 1981-1996; https://doi.org/10.1306/04021211142
  • 168. Żuk, T. (ed.), 2019. Hydrocarbon prospective of Poland. Pyrzyce tender area. Fourth licensing round concessions for hydrocarbon prospection, exploration and production in Poland (in Polish with English summary). PIG Warszawa web data base, access on 18 January 2022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7323a9e-ff80-43b7-bd81-3a47a11609cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.