PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nano-level mechanical and tribological behavior of additively manufactured AlSi10Mg plates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work focuses on the study of the selective laser melting (SLM) fabrication parameter of AlSi10Mg specimen. SLM parameters such as Power and scanning speed are varied to identify the defect-free samples. In addition, X-ray diffraction (XRD) analysis is carried out on the AM AlSi10Mg specimen to study the presence of phase. The results reveal that the Al matrix possesses (200), (220) and (311) phases whereas the AlSil0Mg powder has (111), (200), (220) and (311) phases. The microstructural characterization based on FESEM, TEM and EBSD analysis is carried out. The cross-section of the molten pool appears as a semi-cylindrical shape in the section that is parallel to the plane of powder deposition. The height, width and depth of the molten pool are measured as 150 ± 10 μm, 450 ± 10 μm and 50 ± 10 μm, respectively. TEM analysis reveals that the Si-precipitate and the eutectic Si element of the AM AlSi10Mg specimen are clearly formed in the AM AlSi10Mg specimen. Si precipitate spread within the grains whereas, the eutectic Si element is present at the grain boundary of the specimen. Then, the nanohardness and nanowear behavior are analyzed. Further, the influence of strain rate on the tensile strength is investigated. These mechanical tests are carried out on the defect-free AM AlSi10Mg specimen to assess its maximum performance. Very rough as well as irregular fracture surfaces are observed in the tensile test AM AlSi10Mg specimen. In addition to it, its magnified image reveals that the specimen fracture in the form of river patterns and contains a lot of micron-sized pores throughout the fracture surfaces.
Rocznik
Strony
art. no. e62, 2023
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
  • Department of Production Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
  • Ordnance Factory, Tiruchirappalli 620016, Tamil Nadu, India
  • Department of Production Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India
  • Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan
autor
  • Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan
autor
  • Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan
Bibliografia
  • 1. Mumtaz K, Hopkinson N. Selective laser melting of Inconel 625 using pulse shaping. Rapid Prototyp J. 2010;16(4):248-57.
  • 2. Chen H, Patel S, Mihaela Vlasea Yu, Zou,. Enhanced tensile ductility of an additively manufactured AlSi10Mg alloy by reducing the density of melt pool boundaries. Scripta Mater. 2022;221:114954.
  • 3. Dong Z, Mengchen Xu, Guo H, Fei X, Liu Y, Gong B, Guannan Ju. Microstructural evolution and characterization of AlSi10Mg alloy manufactured by selective laser melting. J Market Res. 2022;17:2343-54.
  • 4. Srinivasa Rakesh C, Raja A, Priyanka N, Jayaganthan R, Vasa NJ. Influence of working environment and built orientation on the tensile properties of selective laser melted AlSi10Mg alloy. Mater Sci Eng A. 2019;750:141-51.
  • 5. Thijs L, Verhaeghe F, Craeghs T, Van Humbeeck J, Kruth J-P. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Mater. 2010;58:3303-12.
  • 6. Louvis E, Fox P, Sutcliffe CJ. J Mater Process Technol. 2011;211:275-84.
  • 7. Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I. Single track formation in selective laser melting of metal powders. J Mater Process Technol. 2010;210(12):1624-31.
  • 8. Yasa E, Kruth JP, Deckers J. Manufacturing by combining selective laser melting and selective laser erosion/laser re-melting. CIRP Ann. 2011;60:263-6.
  • 9. Thijs L, Kempen K, Kruth J-P, Humbeeck JV. Finestructured aluminium products with controllable texture by selective laser melting of pre-alloyed alsi10mg powder. Acta Mater. 2012;61(5):1809-19.
  • 10. Dadbakhsh S, Hao L. Effect of Al alloys on Selective Laser Melting behaviour and microstructure of in situ formed particle reinforced composites. J Alloy Compd. 2012;541:328-34.
  • 11. Olakanmi EO, Dalgarno KW, Cochrane RF. Densification mechanism and microstructural evolution in selective laser sintering of Al-12Si powders. J Mater Proc Tech. 2011;211:113-21.
  • 12. Santos Macias JG, Douillard T, Zhao L, Maire E, Pyka G, Simar A. Influenceon microstructure, strength and ductility of build platform temperature during laser powder bed fusion of AlSi10Mg. Acta Mater. 2020;201:231-43.
  • 13. Qin H, Dong Q, Fallah V, Daymond MR. Rapid solidification and nonequilibrium phase constitution in laser powder bed fusion (LPBF) of AlSi10Mg alloy: analysis of nano-precipitates, eutectic phases, and hardness evolution. Metall Mater Trans A. 2020;51A:448-66.
  • 14. Jeyaprakash N, Yang C-H, Prabu G, Clinktan R. Microstructure and tribological behaviour of inconel-625 superalloy produced by selective laser melting. Met Mater Int. 2022. https://doi.org/10.1007/s12540-022-01198-5.
  • 15. Jeyaprakash N, Prabu G, Yang CH. The influence of different phases on the microstructure and wear of inconel-718 surface alloyed with AlCuNiFeCr hard particles using plasma transferred arc. J Mater Eng Perform. 2022;31:9921-34.
  • 16. Jeyaprakash N, Saravana Kumar M, Yang CH. Enhanced nanolevel mechanical responses on additively manufactured Cu-Cr-Zr copper alloy containing Cu2O nano precipitates. J Alloy Compd. 2023;930:167425.
  • 17. Hall EO. The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc Lond B. 1951;64:747-53.
  • 18. Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst. 1953;174:25-8.
  • 19. Thijs L, Kempen K, Kruth JP, Humbeeck JV. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013;61:1809-19.
  • 20. Hadadzadeh A, Amirkhiz BS, Li J, Mohammadi M. Columnar to equiaxed transition during direct metal laser sintering of AlSi10Mg alloy: effect of building direction. Addit Manuf. 2018;23:121-31. https://doi.org/10.1016/J.ADDMA.2018.08.001.
  • 21. Xiong ZH, Liu SL, Li SF, Shi Y, Yang YF, Misra RDK. Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy. Mater Sci Eng A. 2018. https://doi.org/10.1016/J.MSEA.2018.10.083.
  • 22. Song L, Zhao L, Ding L, Zhu Y, Huang M, Simar A, Li Z. Microstructure and loading direction dependent hardening and damage behavior of laser powder bed fusion AlSi10Mg. Mater Sci Eng A. 2022;832:142484.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f72f9a11-7439-4956-b17d-9569ac2d8278
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.