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Abstract In this paper, we present a new geometric approach for sensitivity anal-
ysis in linear programming that is computationally practical for a decision-maker
to study the behavior of the optimal solution of the linear programming problem
under changes in program data. First, we �x the feasible domain (�x the linear con-
straints). Then, we geometrically formulate a linear programming problem. Next,
we give a new equivalent geometric formulation of the sensitivity analysis problem
using notions of a�ne geometry. We write the coe�cient vector of the objective
function in polar coordinates and we determine all the angles for which the solution
remains unchanged. Finally, the approach is presented in detail and illustrated with
a numerical example.
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1. Introduction

One of the star models of operational research is linear programming.
It is a �eld of mathematical programming the most studied. It concerns the
optimization of a mathematical program where the objective function and the
functions de�ning the constraints are linear, see [2, 4]. Geometrically, linear
programming problems are of convex programming, the linear constraints
form a convex polyhedron; so, the results of the convexity are exploited. The
vertices of the convex polyhedron form the basic solutions, one of them can
be the optimal solution.

One of the essential parts of linear programming is sensitivity analysis,
also called post-optimality analysis, because it starts from the original opti-
mal solution, see [1, 3].
Linear programming models concrete problems such as maximizing a com-
pany's pro�ts, but changes in market data require updates for the initial
problems, and the sensitivity analysis is used to illustrate the margins of the
linear program parameters for which the solution of the initial problem re-
mains stable. Another situation that requires a stability study of the optimal
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solution is the committed errors in the data of the problem and it will allow
us to avoid restarting the procedure of resolution several times.

In this work, we give a geometric approach to study the stability of the
optimal solution when we change the coe�cients of two decision variables in
the objective function. This approach allows us to do the stability study with
the variation of the two parameters at the same time. It uses the Euclidean
norm as well as the linearity of the constraint functions to formulate a new
problem equivalent to sensitivity analysis problem, then this new problem is
solved with a simple calculation. We �x a corner of the feasible domain and we
�nd all the linear forms that reach their optimum value at this point. Geomet-
rically, this consists to determine hyperplanes in R3, therefore the variation
of the coe�cients of the objective function corresponds to the rotation of the
plan.
First, we consider a linear maximization programming problem (1), then we
give a geometric formulation of a linear programming problem. Then, we use
the latter to determine an equivalent problem to sensitivity analysis problem
which consists in determining an angle interval on which the vector of the
objective function coe�cients is allowed to rotate to determine a linear form
that reached its optimal value in initial optimal solution. Then, we look to
the objective function as a plan of R3, and the linear constraints as a convex
subset of R2. The variation of the objective function coe�cients corresponds
to the rotation of the plan.

This paper is structured as follow: First, we give some preliminaries in
section 2. Then, we give the mathematical formulation of a sensitivity analysis
problem in section 3. Next, a geometric formulation of a linear programming
problem is given in section 4. After that, we give a geometric approach to
sensitivity analysis in linear programming in section 5. Then, we illustrate
this approach with a numerical example in section 6. Finally, a conclusion is
given in section 7.

2. Preliminary

Notations 1 Let A = (aij) be a matrix of size m1 ×m2, where m1,m2 are
any integers. We denote by At the transposed matrix of A, de�ned by

At = (aji) .

Definition 2.1 (Isometry of R2) We call an isometry of R2, a linear appli-
cation u ∈ L

(
R2,R2

)
which checks one of the following properties:

a) u preserves the norm: ∀x ∈ R2, ∥u(x)∥ = ∥x∥,
b) u preserves the scalar product: ∀x, y ∈ R2, ⟨u(x), u(y)⟩ = ⟨x, y⟩,
c) u transforms an orthonormal basis into an orthonormal basis.
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The application u is also called orthogonal automorphism. The vector space
of all the isometries (orthogonal automorphisms) of R2 is denoted by O

(
R2
)
.

Property 1 Let u1, u2 be two isometries of O
(
R2
)
, then

1. u1 and u2 are one to one maps.

2. u1 ◦ u2 and u−1
1 are isometries.

3. The translations and rotations of R2 are isometries.

Example 2.2

1. Let v be a vector in R2. A translation of R2 in the direction of v is a
one to one application noted by Tv, which associates to an element x of
R2 another element Tv(x) = x+ v of R2.

2. Let θ be an angle between 0 and 2π. A rotation of R2 of angle θ is a
one to one application, de�ned by

Rθ : R2 −→ R2

(x1, x2) −→ Rθ(x1, x2) = Rot(θ)(x1, x2)
t,

where Rot(θ) is the matrix associated to Rθ, de�ned by

Rot(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Note that for any angle θ, we have

Rot(θ)tRot(θ) =

(
cos(θ) sin(θ)

− sin(θ) cos(θ)

)(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
=

(
1 0
0 1

)
= Id2.

Definition 2.3 Let F1 and F2 be two supplementary linear subspaces of
Rn. Then, we call a projection on F1 parallel to F2, the map PF1 which
associates to x of Rn the unique element PF1(x) of F1 such that x = PF1(x)+z
where z ∈ F2. Such an application is also called a projector.

Property 2 Consider two lines (d) and (d
′
) that form an angle θ

′
. If M and

N are two points that belong to (d) and M
′
= P(d)(M), N

′
= P(d′ )(N), their

orthogonal projection respectively, see the �gure (1), we obtain

M
′
N

′
= MN cos(θ

′
).
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Figure 1: Projection of a segment on a line.

3. Problem formulation

Consider the following initial linear programming problem in the standard
form: 

max
x

f(x) = ct0x

Ax ≤ b
x ≥ 0

, (1)

with

A =


a11 a12
a21 a22
...

...
am1 am2

 , b =


b1
b2
...
bm

 , c0 =

(
c01

c02

)
, x =

(
x1
x2

)
.

Where c0 is the vector of the objective function, c01, c
0
2 are constants, x is a

2 × 1 vector of decision variables, A is a m × 2 matrix of constants, b is a
m× 1 vector of constants and m is the number of linear constraints.

With the hypothesis that c01, c
0
2 are positive numbers, we will see in the

following that it is an arti�cial hypothesis that we made only to simplify the
continuation of this presentation, see the remark (4.3).

Notations 2 Let us de�ne:

� The feasible region:

S :=
{
x ∈ R2 : Ax ≤ b, x ≥ 0

}
.

� The vector space L of linear formes de�ned on R2, is de�ned by:

L
(
R2
)
:=
{
g : R2 → R : g(x1, x2) = c1x1 + c2x2

}
.
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� ∥.∥ denotes the Euclidean norm on R2.

Let x0 = (x01, x
0
2)

t be an optimal solution of the problem (1). A sensitivity
analysis problem is to �nd all linear formes g di�erent from f verifying

argmax
x∈S

f(x) = argmax
x∈S

g(x), g ∈ L
(
R2
)
, (2)

where

argmax
x∈S

f(x) = {y ∈ S | f(y) ≥ f(x), x ∈ S} .

4. Geometric formulation of a linear programming problem

In this part, we will determine a problem equivalent to the linear pro-
gramming problem (1). In R3, we �nd that the feasible region S is a polygon
entirely contained in the vector hyperplane of equation z = 0, we can easily
show that the graph of f is a vector hyperplane (linear subspace of dimension
two).

Let's start by transforming the expression of the linear form f as follows:

f(x1, x2) = c01x1 + c02x2 ⇔ c01x1 + c02x2 − f(x1, x2) = 0

⇔
〈
(c01, c

0
2,−1), (x1, x2, f(x1, x2))

〉
= 0

⇔ ⟨nf , (x1, x2, z)⟩ = 0,

where x1, x2 ∈ R, z = f(x1, x2) and nf = (c01, c
0
2,−1). So, the graph of the

linear form f , de�ned by

Gf(f) =
{
(x1, x2, z) ∈ R3 | z = f(x1, x2)

}
=

{
(x1, x2, z) ∈ R3 | ⟨nf , (x1, x2, z)⟩ = 0

}
is orthogonal to vect (nf ), the linear subspace generated by the vector nf ,
and therefore any vector of R3 can be written as the sum of a vector of Gf(f)
and another vector of vect (nf ).

Now, we position ourselves on R2 (the plane z = 0) and we consider the
line d0 de�ned by the intersection of Gf(f) with the plane z = 0:

(d0) : c01x1 + c02x2 = 0, (3)

d0 is a linear subspace of R2 of dimension 1 directed by the vector:

v0 = (−c02, c
0
1).
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Figure 2: Graphic illustration of the lemma (4.2).

Definition 4.1 The graph of the line d0, de�ned by:

D0 =
{
(x1, x2) ∈ R2 | c01x1 + c02x2 = 0

}
.

The upper half-space of R2 deprived of (d0), de�ned by:

D+
0 =

{
(x1, x2) ∈ R2 | c01x1 + c02x2 > 0

}
.

The lower half-space of R2 deprived of d0, de�ned by:

D−
0 =

{
(x1, x2) ∈ R2 | c01x1 + c02x2 < 0

}
.

Lemma 4.2 For all x1, x2 ∈ D+
0 (respectively y1, y2 ∈ D−

0 ), we have

f(x1)∥∥x1 − P(d0)(x
1)
∥∥ =

f(x2)∥∥x2 − P(d0)(x
2)
∥∥ , (4)

and
f(y1)∥∥y1 − P(d0)(y

1)
∥∥ =

f(y2)∥∥y2 − P(d0)(y
2)
∥∥ . (5)

Proof The intersection of Gf(f) with the plane z = 0 forms a constant
angle 0 ≤ λ ≤ π, see �gure (2). Then,

tan(λ) = f(x1)

∥x1−P(d0)
(x1)∥ = f(x2)

∥x2−P(d0)
(x2)∥ , x1, x2 ∈ D+

0

tan(π − λ) = f(y1)

∥y1−P(d0)
(y1)∥ = f(y2)

∥y2−P(d0)
(y2)∥ , y1, y2 ∈ D−

0

.
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Remark 4.3 If c01, c
0
2 are any real numbers, we can come back to the hy-

potheses of the problem (1) by making the following changes:

1. Apply a rotation Rθ over the feasible region S and the vector c0 simul-
taneously to obtain the problem:

max
x∈S

(Rθ(c0))
tRθ(x), (6)

which is equivalent to the initial problem. Indeed, we have

(Rot(θ)c0)
tRot(θ)x = ct0

(
Rot(θ)tRot(θ)

)
= ct0 Id2x = ct0x = f(x).

Then, an optimal solution x0 of the problem (1) is also optimal to the
problem (6), indeed

(Rot(θ)c0)
tRot(θ)x0 = f(x0) ≥ f(x) = (Rot(θ)c0)

tRot(θ)x.

After that, we pose(
Rot(θ0)c0

)
=
(∣∣c01∣∣ , ∣∣c02∣∣) ≥ 0,

where θ0 is solution of the following linear system:{
cos(θ)c01 − sin(θ)c02 =

∣∣c01∣∣
sin(θ)c01 + cos(θ)c02 =

∣∣c02∣∣ .
2. Apply a translation Tv0 over S in the direction of Rot

(
θ0
)
.
(
c01, c

0
2

)t
because the objective function is constant in the latter. Indeed, for all
y ∈ Tv0(S), we have

f (y) = f (x+ v0) = f (x) + f (v0)

≤ f
(
x0
)
+ f (v0)

≤ f
(
x0 + v0

)
≤ f

(
y0
) , x ∈ S.

where

y0 = x0 + v0, and v0 = αRot
(
θ0
) (

c01, c
0
2

)t
,

α is a strictly positive number su�ciently large.

Proposition 4.4 Let c01, c
0
2 ≥ 0, then the problem (1) is equivalent to:

max
x∈S

∥∥x− P(d0)(x)
∥∥ . (7)
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Proof

⋄ Let x0 be an optimal solution of the problem (1), then

f(x0) ≥ f(x), ∀x ∈ S, (8)

from lemma (4.2), and inequality (8), we get

f(x0)

∥x0−P(d0)
(x0)∥ = f(x)

∥x−P(d0)
(x)∥ ≤ f(x0)

∥x−P(d0)
(x)∥ , ∀x ∈ S.

Then, for all x ∈ S, we get∥∥x0 − P(d0)

(
x0
)∥∥ ≥

∥∥x− P(d0)(x)
∥∥ , (9)

which proves that x0 is an optimal solution of the problem (7).

⋄ Conversely, let x0 be an optimal solution of the problem (7), then x0

veri�es the inequality (9), then

1

∥x−P(d0)
(x)∥ ≥ 1

∥x0−P(d0)
(x0)∥ , ∀x ∈ S.

We multiply the two sides of inequality by f(x), then we apply lemma
(4.2) to the left side, and get

f
(
x0
)∥∥x0 − P(d0) (x

0)
∥∥ =

f(x)∥∥x− P(d0)(x)
∥∥ ≥ f(x)∥∥x0 − P(d0) (x

0)
∥∥ ,

which proves that x0 is an optimal solution of the problem (1),

f
(
x0
)
≥ f(x), for all x ∈ S.

5. A geometric approach to sensitivity analysis in linear pro-

gramming

The geometric analysis we present here consists of writing a linear pro-
gramming problem in polar coordinate system and then determining a rela-
tionship that links the coe�cients of the objective function f . We already
know that to any linear form g in L

(
R2
)
, we can associate a single vector

(gradient of g) in R2 and conversely. Another important fact is that we can
get every corner of the feasible region S by solving a �nite number of linear
systems with two equations and two variables. This allows us to reformulate
the problem (2) as follows:

Problem 5.1 Let x1, x0, x2 be the successive corners (extreme points) of S,
see �gure (3), where x0 is the optimal solution of the problem (7). Find all
vector lines (d) that simultaneously satisfy to the following two inequalities:∥∥x0 − P(d)

(
x0
)∥∥ ≥

∥∥x1 − P(d)

(
x1
)∥∥ , (10)

and ∥∥x0 − P(d)

(
x0
)∥∥ ≥

∥∥x2 − P(d)

(
x2
)∥∥ . (11)
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Figure 3: Extreme points close to the optimal solution x0.

Proposition 5.2 The problem (2) and (5.1) are equivalents.

Proof This is a direct consequence of the proposition (4.4) and convexity
of S. ■

Remark 5.3 The fact that the problem (5.1) is built from another problem
that admits a solution, then it still admit the vector line (d0) as a trivial
solution.

Proposition 5.4 Let θ1, θ2 ∈ [0, π], ϕ ∈
[
0, π2

[
, and r, r1, r2 ≥ 0, and con-

sider the following vectors x10 and x02 written in polar coordinate system:

x10 := x1 − x0 = r1(cos(θ1), sin(θ1))

x02 := x0 − x2 = r2(cos(θ2), sin(θ2))

c = (c1, c2) = r(cos(ϕ), sin(ϕ)) .

Then, the solutions of the problem (5.1) are the line vectors de�ned by:

(d) : r cos(ϕ)x1 + r sin(ϕ)x2 = 0 with θ1 < ϕ+ π
2 < θ2. (12)

Proof Let x0 be a solution of the problem (7), then from propriety (2), we
get { ∥∥P(d)(x

1)− P(d)(x
0)
∥∥ =

∥∥x1 − x0
∥∥ cos(δ1)∥∥P(d)(x

2)− P(d)(x
0)
∥∥ =

∥∥x2 − x0
∥∥ cos(δ2) ,

where δ1 is the angle formed by the vector x10 with v0, and δ2 is the angle
formed by the vector x02 with v0 (the order of vectors is important). On the
other hand, see �gure (4), we have{

|δ1| = |ϕ+ π
2 − θ1| < π

2

|δ2| = |ϕ+ π
2 − θ2| < π

2

.
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Figure 4: Graphic illustration of the proposition (5.4).

Therefore, we get { ∥∥P(d)(x
1)− P(d)(x

0)
∥∥ <

∥∥x1 − x0
∥∥∥∥P(d)(x

2)− P(d)(x
0)
∥∥ <

∥∥x2 − x0
∥∥ .

Since, for all i = 1, 2 the quadrilateral x0xiP(d)(x
i)P(d)(x

0) is irregular, the
two segments P(d)(x

0)x0 and P(d)(x
i)xi are parallels, then{ ∥∥P(d)(x

1)− x1
∥∥ <

∥∥P(d)(x
0)− x0

∥∥∥∥P(d)(x
2)− x2

∥∥ <
∥∥P(d)(x

0)− x0
∥∥ .

6. Numerical example Consider the following linear programming
problem: 

max
x1,x2

f(x1, x2) = 2x1 + 3x2

A(x1, x2)
t ≤ b

x1 ≥ 0;x2 ≥ 0

, (13)

where

A =


1
4

1
2

2
5

1
5

0 4
5

 , b =

 40
40
40

 , c0 =

(
2
3

)
, x =

(
x1
x2

)
.

We start by solving the problem (13) using the simplex method, we obtain
an optimal solution equal to x0 = (80, 40). Then, we solve the following
problem:

arg max
x∈S

f(x) = arg max
x∈S

g(x). (14)
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Consider the successive corners x1, x0, x2 of the feasible region, such that:

x1 = (100, 0) and x2 = (60, 50) .

Then we have
x10 = (−20, 40) = 20

√
5
(
− 1√

5
, 2√

5

)
,

x02 = (−20, 10) = 10
√
5
(
− 2√

5
, 1√

5

)
,

and therefore we get

θ1 = arccos

(
− 1√

5

)
≈ 116.5650o

and

θ2 = arccos

(
− 2√

5

)
≈ 153.4349o.

Finally, for all r > 0 and ϕ ∈ ]26.5650o, 63.4349o[, the linear form:

g(.) = r ⟨(cos(ϕ), sin(ϕ)), .⟩

is a solution of the problem (14).
Finally, to do the sensitivity analysis, we write the coe�cients of the objective
function f in polar coordinate system, as follows:

c0 = rf (cos(ϕf ), sin(ϕf )) ,

where ϕf = arccos
(

2√
13

)
≈ 56.31o and rf =

√
13, and consider the solution

g which stabilizes x0 as an optimal solution. After that, we calculate g
(
x0
)
,

we get

g(x0) = g(80, 40) ≈ 40
√
5r ⟨(cos(ϕ), sin(ϕ)), (cos(26.5650o), sin(26.5650o))⟩

≈ 40
√
5r cos(ϕ− 26.5650o)

≈ 40
√
5r cos(ϕf + ν − 26.5650o)

≈ 40
√
5r cos(56.31o + ν − 26.5650o)

≈ 40
√
5r cos(ν + 29.745o),

where ν ∈ ]−3.18o, 33.8699o[ corresponds to the angle of rotation of grad(f),
to arrive at grad(g), in other words the angle between grad(f) and grad(g).
So, if ν ∈ ]−3.18o, 0o[, the optimal value of f increases, which means the
optimal value of g at x0 is bigger than the optimal value of f at x0. And, if
ν ∈ ]0o, 33.8699o[, the optimal value of f decreases.
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7. Summary. In this work, we give a new formulation of the sensitivity
analysis problem by the problem (5.1), which allowed us to study the stability
of an optimal solution of a linear programming problem in dimension 2 of the
variable space. This is by reducing it to the search for a single interval by
a simple calculation that does not require the use of a machine. The other
advantage is that we determine all the objective functions which reach their
optimum value at a common point. On the other hand, the classical approach
consists to do the study of stability under variation of just one coe�cient, and
the variation of the two coe�cients leads us to two di�erent intervals related
to each other which makes the analysis di�cult, see [1]. Finally, we illustrated
our approach with a numerical example.
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