Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, we obtained a mesoporous silica-calcium phosphate composite (MSi-CaP) in the form of spherical granules (pellets) loaded with cefazolin as a model antibiotic. First, the MSi-CaP composite was manufactured in the powder form via the sol-gel method using a soft template. The cefazolin was loaded into the MSi-CaP using the immersion method. The pellets were composed of MSi-CaP powders (both placebo and cefazolin-loaded) and excipients, such as microcrystalline cellulose and ethyl cellulose. The pellets were obtained in the laboratory scale using the wet-granulation, extrusion and spheronization method. The pellets proved satisfactory mechanical properties which allowed for further investigations (the drug release studies and the mineralization potential assay) without a risk of pellets cracking. The complete drug release from the pellets was observed after 12 h. The burst release of cefazolin from the pellets was reduced by 3 when compared to the burst release of cefazolin-loaded MSi-CaP powders (90 and 30% after 15 min of release studies, respectively). The pellets showed the mineralization potential in vitro, confirmed by the SEM-EDX and FTIR methods. After 60 days of the mineralization potential assay in the simulated body fluid, the examinations revealed that the whole surface of pellets was covered with the carbonated hydroxyapatite in accordance with the desired morphology.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
16--21
Opis fizyczny
Bibliogr. 30 poz., rys., zdj.
Twórcy
autor
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
autor
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
autor
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland
Bibliografia
- [1] M.C. Birt, D.W. Anderson, E. Bruce Toby, J. Wang: Osteomyelitis: Recent advances in pathophysiology and therapeutic strategies, J. Orthop. 14 (2017) 45–52.
- [2] N. Rao, B.H. Ziran, B.A. Lipsky: Treating Osteomyelitis: Antibiotics and Surgery, Plast. Reconstr. Surg. 127 (2011) 177S-187S.
- [3] J. Calhoun, M.M. Manring, M. Shirtliff: Osteomyelitis of the long bones, Semin. Plast. Surg. 23 (2009) 059–072.
- [4] A.L.L. Lima, P.R. Oliveira, V.C. Carvalho, S. Cimerman, E. Savio: Recommendations for the treatment of osteomyelitis, Brazilian J. Infect. Dis. 18 (2014) 526–534.
- [5] M.R. Newman, D.S. Benoit: Local and targeted drug delivery for bone regeneration., Curr. Opin. Biotechnol. 40 (2016) 125–132.
- [6] I. Izquierdo-Barba, L. Ruiz-González, J.C. Doadrio, J.M. González-Calbet, M. Vallet-Regí: Tissue regeneration: A new property of mesoporous materials, Solid State Sci. 7 (2005) 983–989.
- [7] A. Oryan, S. Alidadi, A. Moshiri, N. Maffulli: Bone regenerative medicine: classic options, novel strategies, and future directions, J. Orthop. Surg. Res. 9 (2014) 18.
- [8] M. Vallet-Regi, I. Izquierdo-Barba, M. Colilla: Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370 (2012) 1400–1421.
- [9] C. Li, C. Jiang, Y. Deng, T. Li, N. Li, M. Peng, J. Wang: RhBMP-2 loaded 3D-printed mesoporous silica/calcium phosphate cement porous scaffolds with enhanced vascularization and osteogenesis properties, Sci. Rep. 7 (2017) 41331.
- [10] C. Bharti, U. Nagaich, A.K. Pal, N. Gulati: Mesoporous silica nanoparticles in target drug delivery system: A review., Int. J. Pharm. Investig. 5 (2015) 124–33.
- [11] J. Flynn, S. Mallen, E. Durack, P.M. O’Connor, S.P. Hudson: Mesoporous matrices for the delivery of the broad spectrum bacte-riocin, nisin A, J. Colloid Interface Sci. 537 (2019) 396–406.
- [12] V.S. Kattimani, S. Kondaka, K.P. Lingamaneni: Hydroxyapatite–Past, present, and future in bone regeneration, Bone Tissue Regen. Insights. 7 (2016) 9–19.
- [13] D.K. Kim, S.J. Lee, T.H. Cho, P. Hui, M.S. Kwon, S.J. Hwang: Comparison of a synthetic bone substitute composed of carbonated apatite with an anorganic bovine xenograft in particulate forms in a canine maxillary augmentation model, Clin. Oral Implants Res. 21 (2010) 1334–1344.
- [14] S. Tang, B. Tian, Q.F. Ke, Z.A. Zhu, Y.P. Guo: Gentamicin-loaded carbonated hydroxyapatite coatings with hierarchically porous structures: drug delivery properties, bactericidal properties and biocompatibility, RSC Adv. 4 (2014) 41500–41509.
- [15] M. Prokopowicz, K. Czarnobaj, A. Szewczyk, W. Sawicki: Preparation and in vitro characterisation of bioactive mesoporous silica microparticles for drug delivery applications, Mater. Sci. Eng. C. 60 (2016) 7–18.
- [16] T. Kokubo, H. Takadama: How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials. 27 (2006) 2907–2915.
- [17] J. Kecht, T. Bein: Oxidative removal of template molecules and organic functionalities in mesoporous silica nanoparticles by H2O2 treatment, Microporous Mesoporous Mater. 116 (2008) 123–130.
- [18] H. Chen, Y. Wang: Preparation of MCM-41 with high thermal stability and complementary textural porosity, Ceram. Int. 28 (2002) 541–547.
- [19] R. Al-Oweini, H. El-Rassy: Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4and R′′Si(OR′)3 precursors, J. Mol. Struct. 919 (2009) 140–145.
- [20] H. Ye, X.Y. Liu, H. Hong: Characterization of sintered titanium/hydroxyapatite biocomposite using FTIR spectroscopy, J. Mater. Sci. Mater. Med. 20 (2009) 843–850.
- [21] A. Szewczyk, M. Prokopowicz, W. Sawicki, D. Majda, G. Walker:Aminopropyl-functionalized mesoporous silica SBA-15 as drug carrier for cefazolin: adsorption profiles, release studies, and mineralization potential, Microporous Mesoporous Mater. 274 (2019) 113–126.
- [22] J.M. Rosenholm, T. Czuryszkiewicz, F. Kleitz, J.B. Rosenholm, M. Lindén: On the nature of the Bronsted acidic groups on native and functionalized mesoporous siliceous SBA-15 as studied by benzylamine adsorption from solution, Langmuir. 23 (2007) 4315–4323.
- [23] M. Fan, D. Dai, B. Huang: Fourier Transform Infrared Spectroscopy for natural fibres, in: Salih Salih (Ed.), Fourier Transform - Mater. Anal., 1st ed., InTech, 2012: pp. 45–68. https://www.intechopen.com/books/fourier-transform-materials-analysis/fourier-transform--infrared-spectroscopy-for-natural-fibres (accessed May 29, 2019).
- [24] M.A. Quadir, M.S. Rahman, M.Z. Karim, S. Akter, M.T. Bin Awkat, M.S. Reza: Evaluation of hydrophobic materials as matrices for controlled-release drug delivery. Pak. J. Pharm. Sci. 16 (2003) 17–28.
- [25] S.K. Nandi, S. Bandyopadhyay, P. Das, I. Samanta, P. Muk-herjee, S. Roy, B. Kundu: Understanding osteomyelitis and its treatment through local drug delivery system, Biotechnol. Adv. 34 (2016) 1305–1317.
- [26] R. Dorati, A. DeTrizio, T. Modena, B. Conti, F. Benazzo, G. Gastaldi, I. Genta: Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy, Pharmaceuticals. 10 (2017) 96.
- [27] E.A. Masters, R.P. Trombetta, K.L. de Mesy Bentley, B.F. Boyce, A.L. Gill, S.R. Gill, K. Nishitani, M. Ishikawa, Y. Morita, H. Ito, S.N. Bello-Irizarry, M. Ninomiya, J.D. Brodell, C.C. Lee, S.P. Hao, I. Oh, C. Xie, H.A. Awad, J.L. Daiss, J.R. Owen, S.L. Kates, E.M. Schwarz, G. Muthukrishnan: Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy,” Bone Res. 7 (2019) 20.
- [28] M. Prokopowicz, J. Żeglinski, A. Szewczyk, A. Skwira, G. Walker:Surface-activated fibre-like SBA-15 as drug carriers for bone diseases, AAPS PharmSciTech. 20 (2019) 17.
- [29] G.M.L. Dalmônico, D.F. Silva, P.F. Franczak, N.H.A. Camargo, M.A. Rodríguez: Elaboration biphasic calcium phosphate nanostructured powders, Boletín La Soc. Española Cerámica y Vidr. 54 (2015) 37–43.
- [30] Y. Zheng, X. Liu, Y. Ma, T. Huo, Y. Li, C. Pei: Controlled synthesis of hydroxyapatite microspheres with hierarchical structure and high cell viability, Mater. Lett. 195 (2017) 18–21.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f72ed0f9-0652-4263-a85b-5d5105c435fc