Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents ε-approximation of hydrodynamics equations’ stationary model along with the proof of a theorem about existence of a hydrodynamics equations’ strongly generalized solution. It was proved by a theorem on the existence of uniqueness of the hydrodynamics equations’ temperature model’s solution, taking into account energy dissipation. There was implemented the Galerkin method to study the Navier-Stokes equations, which provides the study of the boundary value problems correctness for an incompressible viscous flow both numerically and analytically. Approximations of stationary and non-stationary models of the hydrodynamics equations were constructed by a system of Cauchy-Kovalevsky equations with a small parameter ε. There was developed an algorithm for numerical modelling of the Navier-Stokes equations by the finite difference method.
Czasopismo
Rocznik
Tom
Strony
307--332
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wzory
Twórcy
autor
- Department of Higher Mathematics, Karaganda Technical University, Kazakhstan
Bibliografia
- [1] C. Conca: On the application of the homogenization theory to a class of problems arising in fluid mechanics. J. Math. Purs at Appl., 64(1), (1985), 31-35.
- [2] M.R. Malik, T.A. Zang, and M.Y. Hussaini: Aspectral collocation method for the Navier-Stokes equations. J. Comput. Phys., 61(1), (1985), 64-68.
- [3] P.M. Gresho: Incompressible fluid dynamics: some fundamental formulation issues. Annu. Rev. Fluid Mech., 23, Palo Alto, Calif., (1991), 413-453.
- [4] R. Lakshminarayana, K. Dadzie, R. Ocone, M. Borg, and J. Reese: Recasting Navier-Stokes equations. J. Phys. Commun., 3(10), (2019), 13-18, DOI: 10.1088/2399-6528/ab4b86.
- [5] S.Sh. Kazhikenova, S.N. Shaltakov, D. Belomestny, and G.S. Shaihova: Finite difference method implementation for numerical integration hydrodynamic equations melts. Eurasian Physical Technical Journal, 17(1), (2020), 50-56.
- [6] O.A. Ladijenskaya: Boundary Value Problems of Mathematical Physics. Nauka, Moscow, 1973.
- [7] Z.R. Safarova: On a finding the coefficient of one nonlinear wave equation in the mixed problem. Archives of Control Sciences, 30(2), (2020), 199-212, DOI: 10.24425/acs.2020.133497.
- [8] A. Abramov and L.F. Yukhno: Solving some problems for systems of linear ordinary differential equations with redundant conditions. Comput. Math. and Math. Phys., 57 (2017), 1285-1293, DOI: 10.7868/S0044466917080026.
- [9] K. Yasumasa and T. Takahico: Finite-element method for three-dimensional incompressible viscous flow using simultaneous relaxation of velocity and Bernoulli function. 1st report flow in a lid-driven cubic cavity at Re = 5000. Trans. Jap. Soc. Mech. Eng., 57(540), (1991), 2640-2647.
- [10] H. Itsuro, Î. Hideki, T. Yuji, and N. Tetsuji: Numerical analysis of a flow in a three-dimensional cubic cavity. Trans. Jap. Soc. Mech. Eng., 57(540), (1991), 2627-2631.
- [11] X. Yan, L. Wei, Y. Lei, X. Xue, Y.Wang, G. Zhao, J. Li, and X. Qingyan: Numerical simulation of Meso-Micro structure in Ni-based superalloy during liquid metal cooling. Proceedings of the 4th World Congress on Integrated Computational Materials Engineering. The Minerals, Metals & Materials Series. Ð. 249-259, DOI: 10.1007/978-3-319-57864-4_23.
- [12] T.A. Barannyk, A.F. Barannyk, and I.I. Yuryk: Exact Solutions of the nonliear equation. Ukrains’kyi Matematychnyi Zhurnal, 69(9), (2017), 1180-1186, http://umj.imath.kiev.ua/index.php/umj/article/view/1768.
- [13] S. Tleugabulov, D. Ryzhonkov, N. Aytbayev, G. Koishina, and G. Sultamurat: The reduction smelting of metal-containing industrial wastes. News îf the Academy of Sciences of the Republic of Kazakhstan, 1(433), (2019), 32-37, DOI: 10.32014/2019.2518-170X.3.
- [14] S.L. Skorokhodov and N.P. Kuzmina: Analytical-numerical method for solving an Orr-Sommerfeld-type problem for analysis of instability of ocean currents. Zh. Vychisl. Mat. Mat. Fiz., 58(6), (2018), 1022-1039, DOI: 10.7868/S0044466918060133.
- [15] N.B. Iskakova, A.T. Assanova, and E.A. Bakirova: Numerical method for the solution of linear boundary-value problem for integrodifferential equations based on spline approximations. Ukrains’kyi Matematychnyi Zhurnal, 71(9), (2019), 1176-1191, http://umj.imath.kiev.ua/index.php/umj/article/view/1508.
- [16] S.Sh. Kazhikenova, M.I. Ramazanov, and A.A. Khairkulova: epsilon-Approximation of the temperatures model of inhomogeneous melts with allowance for energy dissipation. Bulletin of the Karaganda University-Mathematics, 90(2), (2018), 93-100, DOI: 10.31489/2018M2/93-100.
- [17] J.A. Iskenderova and Sh. Smagulov: The Cauchy problem for the equations of a viscous heat-conducting gas with degenerate density. Comput. Maths Math. Phys. Great Britain, 33(8), (1993), 1109-1117.
- [18] A.M. Molchanov: Numerical Methods for Solving the Navier-Stokes Equations. Moscow, 2018.
- [19] Y. Achdou and J.-L. Guermond: Convergence Analysis of a finite element projection / Lagrange-Galerkin method for the incompressible Navier-Stokes equations. SIAM Journal of Numerical Analysis, 37 (2000), 799-826.
- [20] M.P. de Carvalho, V.L. Scalon, and A. Padilha: Analysis of CBS numerical algorithm execution to flow simulation using the finite element method. Ingeniare Revista chilena de Ingeniería, 17(2), (2009), 166-174, DOI: 10.4067/S0718-33052009000200005.
- [21] G. Muratova, T. Martynova, E. Andreeva, V. Bavin, and Z-Q. Wang: Numerical solution of the Navier-Stokes equations using multigrid methods with HSS-based and STS-based smoother. Symmetry, 12(2), (2020), DOI: 10.3390/sym12020233.
- [22] M. Rosenfeld and M. Israeli: Numerical solution of incompressible flows by a marching multigrid nonlinear method. AIAA 7th Comput. Fluid Dyn. Conf.: Collect. Techn. Pap., New-York, (1985), 108-116.92.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f72ecf06-2fcf-4ec9-8f04-fd09edebd00e