Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The mineral framework and pore waters of glacial sediments exposed in the foreland of Weren- skioldbreen in SW Spitsbergen were sampled and analyzed to model the evolution of pore water chemistry, representing the advancement of weathering in a chronosequence. Three samples were taken at distances representing snapshots of approximately 5, 45 and 70 years of exposure. Complementary mineralogical analyses of the mineral framework and chemical analyses of pore waters, coupled with thermodynamic modelling of mineral-water interactions were applied. Recently uncovered sediments of the bottom moraine underwent very little weathering underneath the glacier cover; both the sediments and pore waters in the forefield of the Werenskioldbreen represent a very immature system. Poorly sorted sediments were deposited by the glacier and not reworked by fluvioglacial waters. The ratio of ‘amorphous iron’ to ‘free iron’ Feo/Fed increases with distance from the glacier terminus from 0.30 through 0.36 to 0.49, typical for fresh glacial till. The increase in saturation with CO2 (from p(CO2) –3.8 to –2.4) and the concentration of all major ions in pore waters (from 123 to 748 mg/L total dissolved solids, TDS) was observed in this young chronosequence. The waters evolved from carbonate- dominated to sulphate-dominated, indicating that with progress in weathering the dominating processes are equilibration with carbonates, oxidation of sulphides and the influence of gypsum precipitation by seasonal freeze-thaw cycles. Mass balance calculations and inverse modelling of the composition of pore waters, verified by microscopic observations of alteration on the surfaces of mineral grains, allowed thermodynamic confirmation of the fact that the relative significance of carbonate weathering decreases and that of sulphate increases down the chronosequence. The participation of silicate minerals in weathering is low, indicating a relatively immature stage of weathering within this particular chronosequence. It is significant that the morphology of etch pits and the formation of secondary phases apparent on mineral surfaces were identical, regardless of the distance from the glacier terminus. This might indicate that the mechanisms of particular weathering processes at the mineral-water interface are the same at the initial as well as at the more mature stages and do not change at least within ca. 70 years of exposure.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
249--264
Opis fizyczny
Bibliogr., 54 poz., rys., tab., wykr.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059, Kraków, Poland
autor
- Yeshiva University, Department of Physics, New York 10033, United States
autor
- University of Warmia and Mazury in Olsztyn, Department of Microbiology, ul. Oczapowskiego 1a, 10-957 Olsztyn, Poland
Bibliografia
- 1. Alexander, E. B. & Burt, R., 1996. Soil development on moraines of Mendenhall Glacier, southeast Alaska. 1. The moraines and soil morphology. Geoderma, 72: 1-17.
- 2. Anderson, S. P., 2007. Biogeochemistry of glacial landscape systems. Annual Review of Earth and Planetary Sciences, 35: 375-399.
- 3. Anderson, S. P., Drever, J. I., Frost, S. D. & Holden, P., 2000. Chemical weathering in the foreland of a retreating glacier. Geochimica et Cosmochimica Acta, 64: 1173-1189.
- 4. Anderson, S. P., Drever, J. I. & Humphrey, N. F., 1997. Chemical weathering in glacial environments. Geology, 25: 399-402.
- 5. Bernasconi, S. M. & BigLink Project Members, 2008. Weathering, soil formation and initial ecosystem evolution on a glacier forefield: a case study from the Damma Glacier, Switzerland. Mineralogical Magazine, 72: 19-22.
- 6. Bradley, J. A., Singarayer, J. S. & Anesio, A. M., 2014. Microbial community dynamics in the forefield of glaciers. Proceedings of the Royal Society B, 281: 1-8.
- 7. Brantley, S. L., 2003. Reaction kinetics of primary rock-forming minerals under ambient conditions. Treatise on Geochemistry, 5: 73-117.
- 8. Bukowska-Jania, E., 2003. The Role of Glacier Systems in the Migration of Calcium Carbonate in the Natural Environment. Katowice, Wydawnictwo Uniwersytetu Śląskiego, 248 pp. [In Polish, with English summary.]
- 9. Bukowska-Jania, E., 2007. The role of glacier system in migration of calcium carbonate on Svalbard. Polish Polar Research, 28: 137-155.
- 10. Bukowska-Jania, E. & Jania, J., 1988. Changes in geometry of front of Werenskiold Glacier (Spitsbergen) in 1957-1983. In: Wyprawy Polarne Uniwersytetu Śląskiego 1980-84. Prace Naukowe Uniwersytetu Śląskiego nr 910. Wydawnictwo Uniwersytetu Śląskiego, Katowice, pp. 65-91. [In Polish.]
- 11. Churchman, G. J., 2000. The alteration and formation of soil minerals by weathering. In: Summer, M. E. (ed.), Handbook of Soil Science. CRC Press, Boca Raton, pp. F-3-76.
- 12. Cooper, R., Hodgkins, R., Wadham, J. & Tranter, M., 2011. The hydrology of the proglacial zone of a high-Arctic glacier (Finsterwalderbreen, Svalbard): Sub-surface water fluxes and complete water budget. Journal of Hydrology, 406: 88-96.
- 13. Cooper, R. J., Wadham, J. L., Tranter, M. & Peters, N., 2002. Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard. Journal of Hydrology, 296: 208-223.
- 14. Czerny, J., Kieres, A., Manecki, M. & Rajchel, J., 1993. Geological Map of the SW part of Wedel Jarlsberg Land Spitsbergen, 1:25 000. Edited by Manecki, A. Institute of Geology and Mineral Deposits, University of Mining and Metallurgy, Krakow.
- 15. Czerny, J., Lipień, G., Manecki, A. & Piestrzyński, A., 1992a. Geology and ore mineralization of Hecla Hoek Succession (Precambrian) in front of Werenskioldbreen, South Spitsbergen. Studia Geologica Polonica, 48: 68-114.
- 16. Czerny, J., Pływacz, I. & Szubała, L., 1992b. Siderite mineralization in the Hecla Hoek Succession (Precambrian) at Strypegga, South Spitsbergen. Studia Geologica Polonica, 48: 154-170.
- 17. Dahms, D., Favilli, F., Krebs, R. & Egli, M., 2012. Soil weathering and accumulation rates of oxalate-extractable phases derived from alpine chronosequences of up to 1 Ma in age. Geomorphology, 151-152: 99-113.
- 18. Dümig, A., Smittenberg, R. & Kögel-Knabner, I., 2011. Concurrent evolution of organic and mineral components during initial soil development after retreat of the Damma glacier, Switzerland. Geoderma, 163: 83-94.
- 19. Hodgkins, R., Cooper, R., Wadham, J. & Tranter, M., 2009. The hydrology of the proglacial zone of a high-Arctic glacier (Finsterwalderbreen, Svalbard): Atmospheric and surface water fluxes. Journal of Hydrology, 378: 150-160.
- 20. Hodson, A., Tranter, M. & Vatne, G., 2000. Contemporary rates of chemical denudation and atmospheric CO2 sequestration in glacier basins: an Arctic perspective. Earth Surface Processes and Landforms, 25: 1447-1471.
- 21. Huggett, R. J., 1998. Soil chronosequences, soil development, and soil evolution: a critical review. Catena, 32: 155-172.
- 22. Jania, J. & Hagen, J. O. (eds), 1996. Mass Balance of Arctic Glaciers. IASC Report No. 5. University of Silesia, Sosnowiec - Oslo. 62 pp.
- 23. Kabała, C. & Zapart, J., 2009. Recent, relic and buried soils in the forefield of Werenskiold Glacier, SW Spitsbergen. Polish Polar Research, 30: 161-178.
- 24. Kabała, C. & Zapart, J., 2012. Initial soil development and carbon accumulation on moraines of the rapidly retreating Weren- skiold Glacier, SW Spitsbergen, Svalbard archipelago. Geoderma, 175-176: 9-12.
- 25. Kieres, A. & Piestrzyński, A., 1992. Ore-mineralization of the Hecla Hoek Succession (Precambrian) around Werens- kioldbreen, South Spitsbergen. Studia Geologica Polonica, 48: 116-151.
- 26. Kolondra, L., 2002. Werenskioldbreen and Surrounding Areas, Spitsbergen, Svalbard, Norway. Orthophotomap 1:25000. Silesia University, Sosnowiec and Norsk Polarinstitutt, Tromsø.
- 27. Krawczyk, W. E., Bartoszewski, S. A. & Siwek, K., 2008. Rain water chemistry at Calypsobyen. Polish Polar Research, 29: 149-162.
- 28. Lecomte, K. L., Pasquini, A. J & Depetris, P. J., 2005. Mineral weathering in a Semiarid Mountains River: its assessment through inverse modeling. Aquatic Geochemistry, 11: 173194.
- 29. Majka, J., Be’eri-Shlevin, Y., Gee, D. G., Czerny, J., Frei, D. & Ladenberger, A., 2013. Torellian (c. 640 Ma) metamorphic overprint of the Tonian (c. 950 Ma) basement in the Caledonides of southwestern Svalbard. Geological Magazine, 151: 732-748.
- 30. Majka, J., Czerny, J., Mazur. S., Holm, D. K. & Manecki, M., 2010. Neoproterozoic metamorphic evolution of the Isbjørnhamna Group rocks from south-western Svalbard. Polar Research, 29: 250-264.
- 31. Majka, J., Mazur, S., Manecki, M., Czerny, J. & Holm, D. K., 2008. Late Neoproterozoic amphibolite facies metamorphism of a pre-Caledonian basement block in southwest Wedel Jarlsberg Land, Spitsbergen: new evidence from U-Th-Pb dating of monazite. Geological Magazine, 145: 822-830.
- 32. Manecki, M., Holm, D. K., Czerny, J. & Lux, D., 1998. Thermo- chronological evidence for late Proterozoic (Vendian) cooling in southwest Wedel Jarlsberg Land, Spitsbergen. Geologi- calMagazine, 135: 63-69.
- 33. Marsz, A. A. & Styszyńska, A., 2007. The Climate in the Vicinity of Polish Polar Station in Hornsund. Akademia Morska, Gdynia, 376 pp.
- 34. Mehra, O. P. & Jackson, M. L., 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium carbonate. Clays and Clay Minerals, 7: 317-327.
- 35. Murakami, T., Isobe, H., Sato, T. & Ohnuki., T., 1996. Weathering of chlorite in a quartz-chlorite schist. I. Mineralogical and chemical changes. Clays and Clay Minerals, 44: 244-256.
- 36. Nemergut, D. R., Anderson, S. P., Cleveland, C. C., Martin, A. P. & Miller, A. E., 2007. Microbial community succession in an unvegetated, recently deglaciated soil. Microbial Ecology, 53: 110-122.
- 37. Parkhurst, D. L., 1995. User’s guide to PHREEQC - a computer program for speciation, reaction-path, advective-transport and inverse geochemical calculations. US Geological Survey Water Resources Investigation Report 95-4227, 143 pp.
- 38. Pälli, A., Moore, J. C., Jania, J., Kolondra, L. & Głowacki, P., 2003. The drainage pattern of Hansbreen and Werenskiol- dbreen, two polythermal glaciers in Svalbard. Polar Research, 22: 355-371.
- 39. Schwertmann, U., 1985. The effect of pedogenic environments on iron oxide minerals. Advances in Soil Science, 1: 172-200.
- 40. Sigler, W. V. & Zeyer, J., 2002. Microbial diversity and activity along the forefields of two receding glaciers. Microbial Ecology, 43: 397-407.
- 41. Skiba, S., Drewnik, M. & Kacprzak, A., 2002. Soil of the western coast of Sörkappland. In: Ziaja, W. & Skiba, S. (eds), Sörkappland Landscape Structure and Functioning (Spitsbergen, Svalbard). Wydawnictwo Uniwersytetu Jagiellońskiego. Kraków, pp. 51-86.
- 42. Straneo, F. & Heimbach, P., 2013. North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature, 504: 36-43.
- 43. Szynkiewicz, A., Modelska, M., Buczyński, S., Borrok, D. M. & Merrison, J. P., 2013. The polar sulfur cycle in the Werenskioldbreen, Spitsbergen: Possibile implications for understanding the deposition of sulfate minerals in the North Polar Regions of Mars. Geochimica et Cosmochimica Acta, 106: 326-343.
- 44. Taylor, A. & Blum, J. D., 1995. Relation between soil age and silicate weathering rates determined from the chemical evolution of a glacial chronosequence. Geology, 23: 979-982.
- 45. Tranter, M., Sharp, M. J., Lamb, H. R., Brown, G. H., Hubbard, B. P. & Willis, I. C., 2002. Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland - a new model. Hydrological Processes, 16: 959-993.
- 46. Van Reeuwijk, L. P., 2006. Procedures for Soil Analysis. Technical Report, 7th edition. ISRiC - World Soil Information Centre, Wageningen, the Netherlands, 118 pp.
- 47. Wadham, J. L., Cooper, R. J., Tranter, M. & Bottrell, S., 2007. Evidence for widespread anoxia in the proglacial zone of an Arctic glacier. Chemical Geology, 243: 1-15.
- 48. Wadham, J. L., Cooper, R. J., Tranter, M. & Hodgkins, R., 2001. Enhancement of glacial solute fluxes in the proglacial zone of apolythermal glacier. Journal of Glaciology, 47: 378-386.
- 49. Wadham, J. L., Hodson, A. J., Tranter, M. & Dowdeswell, J. A., 1997. The rate of chemical weathering beneath a quiescent, surge type, polythermal-based glacier, southern Spitsbergen. Annales of Glaciology, 24: 27-31.
- 50. White, A. F., 2003. Natural weathering rates of silicate minerals. Treatise on Geochemistry, 5: 133-168.
- 51. White, A. F. & Brantley, S. L., 2003. The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chemical Geology, 202: 479506.
- 52. Wilson, M. J., 2004. Weathering of the primary rock-forming minerals: processes, products and rates. Clay Minerals, 39: 233266.
- 53. Yoshitake, S., Uchida, M., Koizumi, H. & Nakatsubo, T., 2007. Carbon and nitrogen limitation of soil microbial respiration in a high arctic successional glacier foreland near Ny-Alesund, Svalbard. Polar Research, 26: 22-30.
- 54. Zhu, C., 2005. In situ feldspar dissolution rates in an aquifer. Geochimica et Cosmochimica Acta, 69: 1435-1453.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f72cda8e-5404-4b64-8e7a-ca4f1ffd6ce1