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1. Introduction  

Supermarkets suffer serious financial losses owing to 
problems with their refrigeration systems. A typical 
supermarket may contain more than one hundred 
individual refrigerated cabinets, cold store rooms and 
items of plant machinery which interact as part of a 
complex integrated refrigeration system within the 
store. Things very often go wrong with individual 
units (icing up of components, electrical or 
mechanical failure, and so forth…) or with 
components which serve a network of units (coolant 
tanks, pumps, compressors, and so on). 
In almost all supermarkets, refrigerated cabinets, 
cold store rooms and coldspaces are attached to a 
network of piping through which refrigerant is 
pumped. Heat from the coldspaces is absorbed by 
evaporating refrigerant which is then compressed and 
pumped to condensing units outside the store where 
the heat is expelled. Due to the system’s highly 
integrated nature, a fault in a single unit or item of 
machinery can’t have detrimental effects on the 
entire store, else only decrease of system cool 
capacity. The most commonly used refrigeration 
system for supermarkets today is the multiplex direct 

expansion system [1], [3]. All display cases and cold 
store rooms use direct expansion air-refrigerant coils 
that are connected to the system compressors in a 
remote machine room located in the back or on the 
roof of the store. Heat rejection is usually done with 
air-cooled condensers with simultaneously working 
axial blowers mounted outside. Evaporative 
condensers can be used as well and will reduce 
condensing temperature and system energy 
consumption.  
Figure 1 shows the major elements of a multiplex 
refrigeration system. Multiple compressors operating 
at the same saturated suction temperature are 
mounted on a skid, or rack, and are piped with 
common suction and discharge refrigeration lines. 
Using multiple compressors in parallel provides a 
means of capacity control, since the compressors can 
be selected and cycled as needed to meet the 
refrigeration load. 
Due to the system’s highly integrated nature, a fault 
in a single unit or item of machinery can’t have 
detrimental effects on the entire store, only decrease 
of system cool capacity. Failure of compressor or 
axial condenser blower leads to partial system failure 
(degradation of output cooling capacity) as well as to 
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complete failures of the system. We treat 
refrigeration system as multi-state system (MSS), 
where components and systems have an arbitrary 
finite number of states. According to the generic 

MSS model [6], the system can have different states 
corresponding to the system’s performance rates. 
The performance rate of the system at any instant   is 
a discrete-state continuous-time stochastic process.  

 
Figure 1. Multiplex refrigeration system 

 
In this paper, a generalized approach for calculation 
the reliability measures for decision making of multi-
state supermarket refrigeration system structure is 
suggested. The approach is based on the application 
of the Markov Reward Model. The MSS reliability 
measures can be found by corresponding rewards 
definitions for this model and then by using a 
standard procedure for finding an expected 
accumulated reward during the time interval [0,t] as 
a solution of the system of differential equations. 
 
2. Model description 

Traditional binary-state reliability models allow for a 
system and its components only two possible states: 
perfect functionality (Up) and complete failure 
(Down). However, many real-world systems are 
composed of multi-state components, which have 
different performance levels and for which one 

cannot formulate an "all or nothing" type of failure 
criterion. Failures of some system elements lead in 
these cases only to performance degradation. Such 
systems are called Multi-state Systems (MSS). The 
traditional reliability theory, which is based on a 
binary approach, has recently been extended by 
allowing components and systems to have an 
arbitrary finite number of states. According to the 
generic Multi-state System model [6], any system 
element },...2,1{ nj ∈  can have kj different states 
corresponding to the performance rates, represented 

by the set gj { }1 2, ,...,
jj j jkg g g= , where jig   is the 

performance rate of element j in state i, },...,{ jk21i ∈ . 

The performance rate Gj(t) of element j at any instant 
t 0≥  is a discrete-state continuous-time stochastic 
process that takes its values from gj: ( )G t ∈gj. The 
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system structure function 1( ) ( ( ), , ( ))nG t G t G tφ= …  

produces the stochastic process corresponding to the 
output performance of the entire MSS. In practice, a 
desired level of system performance (demand) also 
can be represented by a discrete-state continuous-
time stochastic process W(t). The relation between 
the MSS output performance and the demand 
represented by two corresponding stochastic 
processes should be studied in order to define the 
performance deficiency for the entire MSS.  
The General Markov Reward Model considers the 
continuous time Markov chain with a set of states 
{1,…,k} and transition intensity matrix 

a ,  , 1,...,ija i j k= = . It is assumed that while the 

process is in any state i during any time unit, some 
money r ii should be paid. It is also assumed that if 
there is a transition from state i to state j, the amount 
r ij will be paid. The amounts r ii and r ij are called 
rewards. They can be negative while representing 
loss or penalty. The main problem is to find a total 
expected reward, accumulated up to time instant T 
under specific initial conditions. Let ( )iV t  be the 

total expected reward accumulated up to time t at 
state i. According to [2], the following system of 
differential equations must be solved under initial 
conditions in order to find the total expected reward: 
  

   1 1

( )
( ),  

                                      1,...,

k k
i

ii ij ij ij j
j j
j i

dV t
r a r a V t

dt

i k

= =
≠

= + +

=

∑ ∑
 (1) 

 
For the reliability measures computation, we 
partition the set of states g, into g0, the set of 
operational or acceptable system states, and gf , the 
set of unacceptable states. The system states 
acceptability depends on the relation between the 
MSS output performance and the desired level of this 
performance – demand, which is determined outside 
the system. In general case demand W(t) is also a 
random process that can take discrete values from the 
set w={ w1,…,wM}. The desired relation between the 
system performance and the demand at any time 
instant t can be expressed by the acceptability 
function ))(),(( tWtGΦ  [6].  The acceptable system 

states correspond to 0))(),(( ≥Φ tWtG  and the 
unacceptable states correspond 
to 0))(),(( <Φ tWtG . The last inequality defines the 
MSS performance deficiency criterion. In many 
practical cases, the MSS performance should be 
equal to or exceed the demand. Therefore, in such 

cases the acceptability function takes the following 
form: 
 

   )()())(),(( tWtGtWtG −=Φ  (2) 

and the criterion of  state performance deficiency can 
be expressed as 
 

   ( ( ), ( )) ( ) ( ) 0G t W t G t W tΦ = − <  (3) 

 
Here without loss of generality we assume that 
required demand level is constant wtW ≡)(  and all 
system states with performance greater than or equal 
to w corresponds to the set of acceptable states and 
all system states with performance lower than w 
correspond to the set of unacceptable states.              

The MSS average availability  ( )A T  is defined 
as mean fraction of time, when the system 
resides in the set of acceptable states during time 
interval [0,T]. In order to assess ( )A T   for MSS, 
the rewards in matrix r for MSS model should be 
determined by the following manner:  

• The rewards associated with all acceptable 
states should be defined as 1 and (2)  

• The rewards associated with all unacceptable 
states should be zeroed as well as all rewards 
associated with transitions. 

The mean reward VK(T) accumulated during interval 
[0, T] will define a part of time that MSS will be in 
the set of acceptable states in the case when state K is 
the initial state . This reward should be found as a 
solution of system (1). After solving (1) and finding 
VK(T), MSS instantaneous availability can be 

obtained as ( ) ( )KA T V T T= . 

Mean number Nf(T)  of blowers’ failures during time 
interval [0, T].  This measure can be treated as a 
mean number of MSS transitions in cause of 
blowers’ failures during time interval [0, T]. For its 
computation, the rewards associated with each such 
transition should be defined as 1. All other rewards 
should be zeroed. In this case, a mean accumulated 
reward VK(T) will define a mean number blowers’ 
failures during a time interval [0,T]: 

)()( TVTN Kf = .  

Mean Time To Failure (MTTF) is the mean time up 
to the instant when the MSS enters the subset of 
unacceptable states for the first time. For its 
computation the multi-state model  should be 
transformed - all transitions that return MSS from 
unacceptable states should be forbidden, as in this 
case all unacceptable states should be treated as 
absorbing states.  
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In order to assess MTTF for MSS, the rewards in 
matrix MTTFr  should be determined as follows:  

• The rewards associated with all acceptable 
states should be defined as 1.  

• The reward associated with unacceptable 
(absorbing) states should be zeroed as well 
as all rewards associated with transitions.  

In this case, the mean accumulated reward Vi(t) 
defines the mean time accumulated up to the first 
entrance into the subset of unacceptable states or 
MTTF, if the state i is the initial state.  
 
3. Numerical example 

Consider the refrigeration system used in one of the 
Israel supermarkets. The system consists of 4 
compressors, situated in the machine room and 2 
main axial condenser blowers. It is possible to add 
one reserve blower. The reserve blower begins to 
work only when one of the main blowers has failed. 
Compressor failure rate is one per year and axial 
condenser blower failure rate is 10 per year. The 
mean repair time for the compressor is one month 
and for blower is 24 hours. The state-space diagram 
for the system without reserved blower is presented 
in Figures 2. 
All transition intensities are shown in the Figure 2. 
The transition intensity matrix (5) is shown below.

Figure 2. The state-space diagram for the refrigeration system without reserved blower 
 
In state 1 the refrigeration system has full 
performance 10.5•109 BTU per year. In state 2 the 
refrigeration system has performance 7.9•109 BTU 
per year.  The refrigeration system performance in 
states 3, 6, 7 and 8 is 5.2•109 BTU per year and in 
states 4 and 9 is 2.6•109 BTU per year. 
The required cool capacity demand is 5•109 BTU per 
year, so only states 1, 2, 3, 6, 7 and 8 are acceptable 
states.  
In order to find the MSS average availability A(t) we 
should present the corresponding reward matrix  a  
in the following form (4): 
 

   
11 22 33 66 77 88 1,  

all other elements are zero
A r r r r r r= = = = = = 

=  
 

r  (4) 

 
The system of differential equations (7) can be 
written in order to find to order the expected total 
rewards ( ), 1,2,...14iV t i = . The initial conditions are 

( ) 0,  1,2,...,14iV t i= = . 
By solving the systems of differential equations (7) 
with transition intensity matrix a and reward matrix 

Ar  we can obtain an MSS average availability. The 
results of calculation are presented in Figure 6.
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In order to find the mean total number of blowers’ 
failures Nf(t) we should present the corresponding 
reward matrix in the following form: 
 

   

16 27 38 49

6,11 7,12 8,13 9,14 1,  

all other elements are zero
Nf

r r r r

r r r r

= = = = 
 = = = = = 
 
 

r  (6) 

 
By solving the systems of differential equations (1) 
with transition intensity matrix a and reward matrix 

Nfr  we can obtain mean total number of blowers’ 

failures during time period [0, T]. The results of 
calculation are presented in Figure 7.  
For computation of the Mean Time To Failure 
during the time interval the state space diagram of 
generated system should be transformed – all 
transitions that return system from unacceptable 
states should be forbidden and all unacceptable 
states should be treated as absorbing state. The state 
space diagram is presented on Figure 3. 
 

 

Figure 3. The state-space diagram for the 
refrigeration system without reserved blower with 

absorbing state 
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According to this state space diagram transition 
intensity matrix a can be presented as follows (8): 
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where 11 22 66, ,...,a a a are the same like in previous 
case.  
In order to find Mean Time To Failure we should 
present the reward matrixes MTTFr  in the form (9), 

shown below. 
 

   

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

=MTTFr  (9) 

 
The system of differential equations (10) can be 
written in order to find to order the expected total 
rewards ( ),  1,2,...,14iV t i = . The initial conditions are 

( ) 0,  1,2,...,14iV t i= = . 
By solving the systems of differential equations (10) 
with transition intensity matrix a and reward matrix 

MTTFr  we can obtain the Mean Time To Failure. The 
results of calculation are presented in Figure 8. 
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In case with reserved blower, the state-space diagram 
for the system is presented in Figures 4. 
There are 19 states. In states 1, 6, 11, 16 – all 4 
compressors are on-line, in states 2, 7, 12, 17 – 3 
compressors are on-line, in states 3, 8, 13, 18 – 2 
compressors are on-line, in states 4, 9, 14, 19 – only 

one compressor is on-line, states 5, 10, 15 – failure 
of all 4 compressors. In states 1–5 two axial 
condenser blowers are on-line, in states 6–10 one 
main blower and reserved blower are on line, in 
states 11–14 only one blower is on line and in states 
16–19 failure of all blowers. 
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Figure 4. The state-space diagram for the refrigeration system with reserved blower 
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In states 1 and 6 the refrigeration system has full 
performance 10.5•109 BTU per year. In states 2 and 
7 the refrigeration system has performance 7.9•109 
BTU per year.  The refrigeration system performance 
in states 3, 8, 11–13 is 5.2•109 BTU per year and in 
states 4, 9 and 14 is 2.6•109 BTU per year. 
The required cool capacity demand as in previous 
case is 5•109 BTU per year, so only states 1, 2, 3, 6, 
7, 8, 11, 12 and 13 are acceptable states and states 4, 
5, 9, 10, 14, 15, 16–19 are unacceptable states. 
The transition intensity matrix may be presented in 
the following form. 
In order to find the MSS average availability A(t) we 
should present the corresponding reward matrix  in 
the following form: 

   
11 22 33 66 77 88

11,11 12,12 13,13 1,  

all other elements are zero

A

r r r r r r

r r r

 = = = = = =
 = = = = 
 
 

r  (12) 

 
By solving the systems of differential equations (1) 
with transition intensity matrix (11) and reward 

matrix Ar  (12) we can obtain an MSS a average 
availability. The results of calculation are presented 
in Figure 6. 
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0 0 0 0 0 0 0 0 2 0 0 0 3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 4

λ
µ µ λ λ

µ
µ λ λ

µ µ λ λ
µ µ λ λ

µ µ λ λ
µ

B

B C C B

C

B C B

B C C B

B C C B

B C C B

C

a

a

a

a

a

a

a15,15

16,16

17,17

18,18

19,19

 (11)

0 0 0 0

0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0

µ
µ

µ
µ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B

B

B

B

a

a

a

a

 
where 

11 12 16a λ λ= +  77 78 7,12 72 76a λ λ µ µ= + + +  13,13 13,14 13,18 13,8 13,12a λ λ µ µ= + + +  

22 23 27 21a λ λ µ= + +  
88 89 8,13 83 87a λ λ µ µ= + + +  14,14 14,15 14,19 14,9 14,13a λ λ µ µ= + + +  

33 34 38 32a λ λ µ= + +  99 89 8,13 94 98a λ λ µ µ= + + +  15,15 15,14a µ=  

44 45 49 43a λ λ µ= + +  
10,10 10,9a µ=  16,16 16,11a µ=  

55 54a µ=  
11,11 11,12 11,16 11,6a λ λ µ= + +  17,17 17,12a µ=  

66 6,11 67 61a λ λ µ= + +  
12,12 12,13 12,17 12,7 12,11a λ λ µ µ= + + +  

18,18 18,13 19,19 19,14,  a aµ µ= =  

 
In order to find the mean total number of blowers 
failures Nf(t) we should present the corresponding 
reward matrix in the following form (13): 

16 27 38 49

6,11 7,12 8,13 9,14

11,16 12,17 13,18 14,19 1,  

all other elements are zero

Nf

r r r r

r r r r

r r r r

= = = = 
 = = = = =  = = = = 
 
 

r  (13) 
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By solving the systems of differential equations (1) 
with transition intensity matrix (11) and reward 
matrix Nfr  (13) we can obtain an MSS mean total 

number of blowers failures during time period [0, T], 
where T=1 year. The results of calculation are 
presented in Figure 7. 

For computation of the Mean Time To Failure during 
the time interval the state space diagram of generated 
system like in previous case should be transformed - 
all transitions that return system from unacceptable 
states should be forbidden and all unacceptable states 
should be treated as absorbing state. The state space 
diagram is presented on Figure 5. 

Figure 5. The state-space diagram for the 
refrigeration system with reserved blower with 

absorbing state 

 
According to this state space diagram transition 
intensity matrix a can be presented as follows (14): 
 

11

22

33

44

55

66

77

88

99

4 0 2 0 0 0 0 0 0

3 0 2 0 0 0 0 0

0 2 0 0 2 0 0 0 2

0 0 4 0 0 0 0

0 0 3 0 2 0 0

0 0 0 2 0 0 2 2

0 0 0 2 0 0 4 0

0 0 0 0 2 0 3

0 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0

λ λ
µ λ λ

µ λ λ
µ λ λ

µ µ λ λ
µ µ λ λ

µ λ λ
µ µ λ λ

µ µ λ

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
 

C B
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B C B

B C C B

B C B C

B C B

B C C B

B C B

a

a

a

a

a
a

a

a

a

a

                                                                               (14) 
where 11 22 99, ,...,a a a are the same like in previous 
case. In order to find Mean Time To Failure we 

should present the reward matrixes r in the following 
form (15): 
 

   

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

=MTTFr  (15) 

 
By solving the systems of differential equations (1) 
with transition intensity matrix (14) and reward 

matrix MTTFr  (15) we can obtain an MTTF during 
time period.  
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Figure 6. MSS average availability for different 
types of systems 

 
Curves in Figures 6 support the engineering 
decision-making and determine the areas where 
required performance deficiency level of the 
refrigeration system can be provided by 
configuration “with reserve” or by configuration 
“without reserve”. For example, from the Figure 6 
one can conclude that the configuration “without 
reserve” cannot provide the required average 
availability if it is greater than 0.988. 
Figure 7 presents mean total number of blowers’ 
failures for different types of systems and gives 
logistics information for decision on spare parts 
supply, because long delay may occur if spares are 
not to hand when needed and holding spares costs 
money. From this figure one can conclude that mean 
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total number of blowers’ failures is not different for 
reserved and not reserved systems. 
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Figure 7. MSS mean total number of blowers’ 
failures for different types of systems 
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Figure 8. MSS Mean Time to Failure 
 
From Figure 8 one can see dependence of mean time 
to failure (MTTF) on mean time to repair for not 
reserved system, provided by different repair teams. 
Comparison with required level of MTTF, 
established for the Israel Supermarkets, shows that 
only repair teams with MTTR grater then 36 hours 
provide this required level. For reserved system 
mean time to system failure growth seven times and 
reach 14.75 years. 
 
4. Conclusion  

• The universal method was suggested to 
compute MSS reliability measures: average 
availability, total number of blowers’ failures 
and MTTF. The method is based on different 
reward matrix determinations for an MSS 
model that is interpreted as a Markov Reward 
Model.   

• The approach suggested is well formalized 
and suitable for practical application in 
reliability engineering. It supports the 
engineering decision-making and determines 
different system structures providing a 
required reliability/availability level of MSS.  

• The numerical example is presented in order 
to illustrate the suggested approach. 
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