PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mitigating the bending losses of the silica-titania-based rib waveguide structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optical waveguides (WGs) are widely used as interconnects in integrated optical circuits both for telecommunication and sensing applications. There are different kind of optical WG designs that offers different guiding parameters, opening a vast number of possibilities. A silica-titania (SiO₂:TiO₂) rib WG is discussed and examined by a numerical analysis in this article with a great emphasis on the analysis of bending losses and optimization. A modal analysis for different basic parameters of the WG is presented with a detailed wavelengthbased modal analysis. Various potential fabrication methods are discussed, however, a solgel method and dip-coating deposition technique are proposed for the low-cost development of such WGs. Moreover, an approach towards minimizing the bending losses by adding an upper cladding layer on the rib WG is presented and described.
Rocznik
Strony
art. no. e145551
Opis fizyczny
Bibliogr. 82 poz., rys., tab., wykr.
Twórcy
  • Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa, Poland
  • Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa, Poland
  • Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa, Poland
  • Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa, Poland
Bibliografia
  • [1] Wu, Y. et al. Applications of topological photonics in integrated photonic devices. Adv. Opt. Mater. 5, 1700357 (2017). https://doi.org/10.1002/adom.201700357
  • [2] Royon, M. et al. Sol–gel waveguide-based sensor for structural health monitoring on large surfaces in aerospace domain. Aerospace 8, 109 (2021). https://doi.org/10.3390/aerospace8040109
  • [3] Chen, Q., Li, L., Zheng, Q., Zhang, Y. & Wen, L. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron. Adv. 3, 190040 (2020). https://doi.org/10.29026/oea.2020.190040
  • [4] Alberti, S. & Jágerská, J. Sol-gel thin film processing for integrated waveguide sensors. Front. Mater. 8, 629822 (2021). https://doi.org/10.3389/fmats.2021.629822
  • [5] Vlasov, Y. A. Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G. IEEE Commun. Mag. 50, S67-S72 (2012). https://doi.org/10.1109/MCOM.2012.6146487
  • [6] Dai, D. X. & Wang, S. P. Asymmetric directional couplers based on silicon nanophotonic waveguides and applications. Front. Optoelectron. 9, 450-465 (2016). https://doi.org/10.1007/s12200-016-0557-8
  • [7] Martens, D. et al. A low-cost integrated biosensing platform based on SiN nanophotonics for biomarker detection in urine. Anal. Methods 10, 3066-3073 (2018). https://doi.org/10.1039/c8ay00666k
  • [8] Wang, Z. et al. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat. Commun. 10, 1-6 (2019). https://doi.org/10.1038/s41467-019-08994-5
  • [9] Boratto, M. H., Congiu, M., dos Santos, S. B. O. & Scalvi, L. V. A. Annealing temperature influence on sol-gel processed zirconium oxide thin films for electronic applications. Ceram. Int. 44, 10790-10796 (2018). https://doi.org/10.1016/j.ceramint.2018.03.117
  • [10] Kailasa Ganapathi, S. et al. Highly sensitive NO2 sensor based on ZnO nanostructured thin film prepared by SILAR technique. Sens. Actuators B Chem. 335, 129678 (2021). https://doi.org/10.1016/j.snb.2021.129678
  • [11] Bright, T. J. et al. Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films. J. Appl. Phys. 114, 083515 (2013). https://doi.org/10.1063/1.4819325
  • [12] Eiamchai, P., Chindaudom, P., Pokaipisit, A. & Limsuwan, P. A spectroscopic ellipsometry study of TiO2 thin films prepared by ion-assisted electron-beam evaporation. Curr. Appl. Phys. 9, 707-712 (2009). https://doi.org/10.1016/j.cap.2008.06.011
  • [13] Luo, X. et al. Investigation of HfO2 thin films on Si by X-ray photoelectron spectroscopy, rutherford backscattering, grazing incidence X-ray diffraction and variable angle spectroscopic ellipso-metry. Crystals 8, 248 (2018). https://doi.org/10.3390/cryst8060248
  • [14] Venkataraj, S. et al. Structural and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron sputtering. J. Appl. Phys. 92, 3599-3607 (2002). https://doi.org/10.1063/1.1503858
  • [15] Fadel, M., Azim, M., Omer, O. A. & Basily, R. R. A study of some optical properties of hafnium dioxide (HfO2) thin films and their applications. Appl. Phys. A 66, 335-343 (1998). https://doi.org/10.1007/s003390050675
  • [16] Chee, K. W. A., Tang, Z., Lü, H. & Huang, F. Anti-reflective struc-tures for photovoltaics: Numerical and experimental design. Energy Rep. 4, 266-273 (2018). https://doi.org/10.1016/j.egyr.2018.02.002
  • [17] Gondek, E. & Karasinski, P. High reflectance materials for photovoltaics applications: Analysis and modelling. J. Mater. Sci. Mater. Electron. 24, 2934-2943 (2013). https://doi.org/10.1007/s10854-013-1194-2
  • [18] Skolik, M., Domanowska, A., Karasinski, P., Gondek, E. & Michalewicz, A. Double layer sol-gel derived antireflective coatings on silicon–design, optical and Auger electron spectroscopy charac-terization. Mater. Lett. 251, 210-213 (2019). https://doi.org/10.1016/j.matlet.2019.05.071
  • [19] Shen, H., Wang, Z., Wu, Y. & Yang, B. One-dimensional photonic crystals: Fabrication, responsiveness and emerging applications in 3D construction. RSC Adv. 6, 4505-4520 (2016). https://doi.org/10.1039/C5RA21373H
  • [20] Daldosso, N. et al. Comparison among various Si/sub 3/N/sub 4/waveguide geometries grown within a CMOS fabrication pilot line. J. Light. Technol. 22, 1734-1740 (2004). https://doi.org/10.1109/JLT.2004.831182
  • [21] Lambeck, P. V., Van Lith, J. & Hoekstra, H. J. W.M. Three novel integrated optical sensing structures for the chemical domain. Sens. Actuators B Chem. 113, 718-729 (2006). https://doi.org/10.1016/j.snb.2005.07.024
  • [22] Gorecki, Ch. Optimization of plasma-deposited silicon oxinitride films for optical channel waveguides. Opt. Lasers Eng. 33, 15-20 (2000). https://doi.org/10.1016/S0143-8166(00)00024-5
  • [23] Wörhoff, K. A. et al. Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics. Sens. Actuators A Phys. 74, 9-12 (1999). https://doi.org/10.1016/S0924-4247(98)00325-2
  • [24] Tan, S. T. et al. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. J. Appl. Phys. 98, 013505 (2005). https://doi.org/10.1063/1.1940137
  • [25] Pan, X. H. et al. Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition. J. Appl. Phys. 103, 023708 (2008). https://doi.org/10.1063/1.2828017
  • [26] Touam, T. et al. Low loss sol-gel TiO2 thin films for waveguiding applications. Coatings 3, 49-58 (2013). https://doi.org/10.3390/coatings3010049
  • [27] Zaręba-Grodź, I. et al. Europium-doped silica–titania thin films obtained by the sol–gel method. Opt. Mater. 29, 1103-1106 (2007). https://doi.org/10.1016/j.optmat.2006.05.001
  • [28] Ferrari, J. L., de O. Lima, K. & Gonçalves, R. R. Refractive indexes and spectroscopic properties to design Er3+-doped SiO2-Ta2O5 films as multifunctional planar waveguide platforms for optical sensors and amplifiers. ACS Omega 6, 8784-8796 (2021). https://doi.org/10.1021/acsomega.0c05351
  • [29] Forastiere, M. A. et al. Strip-loaded sol-gel waveguides: design and fabrication. Fiber Integr. Opt. 20, 29-43 (2001). https://doi.org/10.1080/01468030151072976
  • [30] Urlacher, C. C. Study of erbium doped ZrO2 waveguides elaborated by a sol–gel process. Opt. Mater. 12, 19-25 (1999). https://doi.org/10.1016/S0925-3467(98)00051-2
  • [31] Karasiński, P. Silica-titania films fabricated by sol-gel method for applications in planar photonics. Acta Phys. Pol. 116, S-114-S-116 (2009). http://przyrbwn.icm.edu.pl/APP/PDF/116/a116zs31.pdf
  • [32] Karasiński, P.& Rogoziński, R. Rib waveguides fabricated by means of chemical etching of sol–gel SiO2: TiO2 films. Opt. Commun. 245, 237-242 (2005). https://doi.org/10.1016/j.optcom.2004.10.074
  • [33] Karasinski, P., Tyszkiewicz, C., Domanowska, A., Michalewicz, A. & Mazur, J. Low loss, long time stable sol-gel derived silica-titania waveguide films. Mater. Lett. 143, 5-7 (2015). https://doi.org/10.1016/j.matlet.2014.12.048
  • [34] Karasinski, P., Tyszkiewicz, C., Piramidowicz, R. & Kazmierczak, A. Development of integrated photonics based on SiO2:TiO2 sol-gel derived waveguide layers: state of the art, perspectives, prospective applications. Proc. SPIE 11364, 1136414 (2020). https://doi.org/10.1117/12.2559059
  • [35] Lukowiak, A., Dylewicz, R., Patela, S., Strek, W. & Maruszewski, K. Optical properties of SiO2-TiO2 thin film waveguides obtained by the sol-gel method and their applications for sensing purposes. Opt. Mater. 27, 1501-1505 (2005). https://doi.org/10.1016/j.optmat.2005.01.007
  • [36] Zięba, M. et al. High refractive index silica-titania films fabricated via the sol–gel method and dip-coating technique-physical and chemical characterization. Materials 14, 7125 (2021). https://doi.org/10.3390/ma14237125
  • [37] Jaglarz, J., Dulian, P. & Karasiński, P. Thermo-optical properties of porous silica thin films produced by sol-gel method. Mater. Chem. Phys. 243, 122603 (2020). https://doi.org/10.1016/j.matchemphys.2019.122603
  • [38] Nizioł, J., Gondek, E. & Karasiński, P. Changes in optical parameters of SiO2: TiO2 films obtained by sol-gel method observed as a result of thermal treatment. Materials 14, 2290 (2021). https://doi.org/10.3390/ma14092290
  • [39] Karasiński, P. et al. Highly sensitive sensor structure based on sol-gel waveguide films and grating couplers. Electronics 10, 1389 (2021). https://doi.org/10.3390/electronics10121389
  • [40] Zięba, M. et al. Erbium-doped sol-gel derived silica-titania films. Proc. SPIE 12148, 1214803 (2022). https://doi.org/10.1117/12.2622299
  • [41] Karasiński, P. Sol-Gel derived silica-titania waveguide films for applications in evanescent wave sensors-comprehensive study. Materials 15, 7641 (2022). https://doi.org/10.3390/ma15217641
  • [42] Kozłowski, Ł. et al. Low-cost integrated photonic platform developed via a sol-gel dip-coating method: A brief review. Sens. Transducers J. 259, 82-92 (2022). https://sensorsportal.com/HTML/DIGEST/P_3284.htm
  • [43] Butt, M. A. et al. Optical Waveguides For Integrated Photonics: Mainstream Technologies versus Low-Cost Silica-Titania Sol-Gel Approach Optical Waveguides For Integrated Photonics: Mainstream Technologies Versus Low-Cost Silica-Titania Sol-Gel Approach. in Advances in Sensors: Reviews 8 (ed. Yurish, S. Y.) 85-108 (IFSA, 2022).
  • [44] Kozłowski, Ł., Kaźmierczak, A., Butt, M. A. & Piramidowicz, R. Waveguide Structures Based On A Low-Cost Silica-Titania Optical Platform For Sensing Applications. Warsaw University of Techno-logy (2022). https://atam.port.org.pl/wp-content/uploads/2022/09/ kozlowski-poster-online.pdf
  • [45] Butt, M. A. Tyszkiewicz, C., Karasiński, P. & Piramidowicz, R. Optical thin films fabrication techniques-towards a low-cost solution for the integrated photonic platform: a review of the current status. Materials 15, 4591 (2022). https://doi.org/10.3390/ma15134591
  • [46] Butt, M. A. Subwavelength grating waveguide structures proposed on the low-cost silica-titania platform for optical filtering and refractive index. Int. J. Mol. Sci. 23, 6614 (2022). https://doi.org/10.3390/ijms23126614
  • [47] Butt, M. A. Development of a low-cost silica-titania optical platform for integrated photonics applications. Opt. Express 30, 23677-23694 (2022). https://doi.org/10.1364/OE.460318
  • [48] Butt, M. A., Kaźmierczak, A., Tyszkiewicz, C., Karasiński, P. & Piramidowicz, R. (2021). Mode sensitivity exploration of silica-titania waveguide for refractive index sensing applications. Sensors 21, 7452 (2020). https://doi.org/10.3390/s21227452
  • [49] Brimont, A. et al. Low-loss and compact silicon rib waveguide bends. IEEE Photonics Technol. Lett. 28, 299-302 (2015). http://doi.org/10.1109/LPT.2015.2495230
  • [50] Dullo, F. T., Tinguely, J.-C., Stian, A. S. & Hellesø, O. G. Single-mode limit and bending losses for shallow rib Si3N4 waveguides. IEEE Photon. J. 7, 1-11 (2015). https://doi.org/10.1109/JPHOT.2014.2387252
  • [51] Dai, D. & He, S. Analysis of characteristics of bent rib waveguides. J. Opt. Soc. Am. A 21, 113-121 (2004). https://doi.org/10.1364/JOSAA.21.000113
  • [52] Selvaraja, S. K., Bogaerts, W., Absil, P., Van Thourhout, D. & Baets, R. Record low-loss hybrid rib/wire waveguides for silicon photonic circuits. Group IV Photonics, Ghent University (2010). http://www.photonics.intec.ugent.be/download/pub_2650.pdf
  • [53] Butt, M. A., Khonina, S. N., Kazanskiy, N. L. Optical elements based on silicon photonics. J. Comput. Opt. 43, 1079-1083 (2019). https://computeroptics.ru/eng/KO/Annot/KO43-6/430618e.html
  • [54] Bogaerts, W. & Selvaraja, S. K. Compact single-mode silicon hybrid rib/strip waveguide with adiabatic bends. IEEE Photon. J. 3, 422-432 (2011). https://doi.org/10.1109/JPHOT.2011.2142931
  • [55] Pennings, E. C. M. & Deri, R. J. Simple Method For Estimating Useable Bend Radii Of Deeply Etched Optical Rib Waveguides. in Integrated Photonics Research paper ThF1 (Optica Publishing Group, 1991). https://doi.org/10.1364/IPR.1991.ThF1
  • [56] Seo, Ch. & Chen, J. C. Low transition losses in bent rib waveguides. J. Light. Technol. 14, 2255-2259 (1996). https://doi.org/10.1109/50.541216
  • [57] Rahman, B. M. A. Leung, , D. M. H,. Obayya, S. S. A. & Grattan, K. T. V. Numerical analysis of bent waveguides: bending loss, transmission loss, mode coupling, and polarization coupling. Appl. Opt. 47, 2961-2970 (2008). https://doi.org/10.1364/AO.47.002961
  • [58] Chen, Y., Yu. J,. Yan, Q. & Chen, S. Analysis on influencing factors of bend loss of silicon-on-insulator waveguides. Chin. J. Semicond. 26, 216–219 (2005). http://www.jos.ac.cn/en/article/id/481c837e-a5a4-4e55-85f4-968472367b5b
  • [59] Nurdiani, Z. & Ehsan, A. A. Large cross-section rib silicon-on-insulator (SOI) S-bend waveguide. Optik 130, 1414-1420 (2017). https://doi.org/10.1016/j.ijleo.2016.11.161
  • [60] Srinivasan, H., Bommalakunta, B., Chamberlain, A. & Hastings, J. T. Finite element analysis and experimental verification of SOI waveguide bending loss. Microw. Opt. Technol. Lett. 51, 699-702 (2009). https://doi.org/10.1002/mop.24135
  • [61] Austin, M. & Flavin, P. Small-radii curved rib waveguides in GaAs/GaAlAs using electron-beam lithography. J. Light. Technol. 1, 236-240 (1983). https://doi.org/10.1109/JLT.1983.1072088
  • [62] Galarza, M. et al. Simple low-loss waveguide bends using ARROW effect. Appl. Phys. B 80, 745-748 (2005). https://doi.org/10.1007/s00340-005-1775-8
  • [63] Subramaniam, V., De Brabander, G. N., Naghski, D. H. & Boyd, J. T. Measurement of mode field profiles and bending and transition losses in curved optical channel waveguides. J. Light. Technol. 15, 990-997 (1997). https://doi.org/10.1109/50.588672
  • [64] Pandraud, G., French, P. J. & Sarro, P. M. Experimental study of bent SiC optical waveguides. Microw. Opt. Technol. Lett. 47, 219-220 (2005). https://doi.org/10.1002/mop.21128
  • [65] Golonka, L. et al. Low temperature co-fired ceramics (LTCC) microsystems. Opt. Appl. 41, 383-388 (2011). https://dbc.wroc.pl/Content/57700/PDF/optappl_4102p383.pdf
  • [66] Vasconcelos, H. C. Optical Waveguides Based On Sol-Gel Coatings. in Electromagnetic Propagation and Waveguides in Photonics and Microwave Engineering (ed. Steglich, P.) Ch. 3 (IntechOpen, 2020). https://doi.org/10.5772/intechopen.91993
  • [67] Nowak, K. et al. Sol-Gel-Based Optical Waveguides On LTCC Substrates. in 31st International Spring Seminar on Electronics Technology 518-522 (IEEE, 2008). https://doi.org/10.1109/ISSE.2008.5276621
  • [68] Tadaszak, R. J., Łukowiak, A., Golonka, L. J. & Patela, S. Hybrid sol–gel–glaze planar optical waveguides on LTCC substrate–preliminary works. Opt. Appl. 41, 493-500 (2011).
  • [69] Butt, M. A. Thin-film coating methods: a successful marriage of high-quality and cost-effectiveness—a brief exploration. Coatings 12, 1115 (2022). https://doi.org/10.3390/coatings12081115
  • [70] Karasiński, P. Sol-gel derived optical waveguide films for planar sensors with phase modulation. Opt. Appl. 34, 467-475 (2004). https://delibra.bg.polsl.pl/Content/28404/BCPS_32162_-_Sol-gel-derived-opti_0000.pdf
  • [71] Karasiński, P., Jaglarz, J. & Mazur, J. Low loss silica-titania waveguide films. Photonics Lett. Poland 2, 37-39 (2010). https://doi.org/10.4302/plp.2010.1.13
  • [72] Lishan, D. Plasma etching: comparing PE, RIE and ICP-RIE. Plasma-Therm (2020). www.plasmatherm.com
  • [73] Jansen, H., Gardeniers, H., de Boer, M., Elwenspoek, M. & Fluitman, J. A survey on the reactive ion etching of silicon in microtechnology. J. Micromech. Mikroeng. 6, 14 (1996). https://doi.org/10.1088/0960-1317/6/1/002
  • [74] Karasiński, P., Tyszkiewicz, C. & Rogoziński, R. Single-mode rib waveguides fabricated by means of sol-gel method. Acta Phys. Pol. 118, 1168-1170 (2010). http://przyrbwn.icm.edu.pl/APP/PDF/118/a118z6p20.pdf
  • [75] Schwartz, G. C. & Schaible, P. M. Reactive ion etching of silicon. J. Vac. Sci. Technol. 16, 410-413 (1979). https://doi.org/10.1116/1.569962
  • [76] Karasiński, P., Tyszkiewicz, C., Rogoziński, R., Jaglarz, J. & Mazur, J. Optical rib waveguides based on sol-gel derived silica-titania films. Thin Solid Films 519, 5544-5551 (2011). https://doi.org/10.1016/j.tsf.2011.02.064
  • [77] Iliescu, C. & Tay, F. E. H. Wet etching of glass. in Proceedings of the International Semiconductor Conference CAS 1, 35-44 (2005). https://doi.org/10.1109/SMICND.2005.1558704
  • [78] Hyeongsik, P. et al. A review of wet chemical etching of glasses in hydrofluoric acid based solution for thin film silicon solar cell application. Curr. Photovolt. Res. 5, 75-82 (2017). https://doi.org/10.21218/CPR.2017.5.3.075
  • [79] Spierings, G. Wet chemical etching of silicate glasses in hydrofluoric acid based solutions. J. Mater. Sci. 28, 6261-6273 (1993). https://doi.org/10.1007/BF01352182
  • [80] Shubhava, A. et al. Chemical etching of glasses in hydrofluoric acid: A brief review. Materials Today Proc. 55, 46-51 (2022). https://doi.org/10.1016/j.matpr.2021.12.110
  • [81] Butt, M. A, Kozlowski, L. & Piramidowicz, R. Numerical scrutiny of a silica-titania-based reverse rib waveguide with vertical and rounded sidewalls. Appl. Opt. 62, 1296-1302 (2023). https://doi.org/10.1364/AO.480856
  • [82] Karasiński, P., Jaglarz, J., Reben, M., Skoczek, E. & Mazur, J. Porous silica xerogel films as antireflective coatings – fabrication and characterization. Opt. Mater. 33, 1989-1994 (2011). https://doi.org/10.1016/j.optmat.2011.04.003
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f719fd9e-4c72-4c2c-a656-b66a5ae73dde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.