AFFINE EXTENSIONS OF FUNCTIONS WITH A CLOSED GRAPH

Marek Wójtowicz and Waldemar Sieg

Communicated by Henryk Hudzik

Abstract. Let A be a closed G_{δ} -subset of a normal space X. We prove that every function $f_0 \colon A \to \mathbb{R}$ with a closed graph can be extended to a function $f \colon X \to \mathbb{R}$ with a closed graph, too. This is a consequence of a more general result which gives an affine and constructive method of obtaining such extensions.

Keywords: real-valued functions with a closed graph, points of discontinuity, affine extensions of functions.

Mathematics Subject Classification: 26A15, 54C20, 54D10.

1. INTRODUCTION

Let $\mathcal{C}(A)$ denote the set of all continuous functions on a nonempty subset A of a Hausdorff space X. In this paper, every considered function is real. The set of all closed-graph functions on X is denoted by $\mathcal{U}(X)$. Obviously $\mathcal{C}(X) \subset \mathcal{U}(X)$. This paper deals with the following general problem in the theory of real functions, which is inspired by the Tietze extension theorem:

(P) Let A be a nonempty subset of a topological space X and let $f_0 \in \mathbb{R}^A$ be a function with a certain property (W). Can f_0 be extended to a function $f \in \mathbb{R}^X$ with the same property (W)?

It is well known that if X is a metric space, and A is a closed subset of X, the Tietze theorem can be significantly strengthened: In 1933 Borsuk [4] proved that there is a positive linear operator Ext from $\mathcal{C}(A)$ into $\mathcal{C}(X)$ such that $\operatorname{Ext}(f_0)_{\upharpoonright A} = f_0$ for every $f_0 \in \mathcal{C}(A)$; furthermore, the restriction of Ext to the space $\mathcal{C}^b(A)$ of all bounded elements of $\mathcal{C}(A)$ is a positive isometry into $\mathcal{C}^b(X)$. Thus, the Borsuk's operator Ext was the first example of a linear extension operator: its existence proved it is possible to extend two functions $f, g \in \mathcal{C}(A)$ in such a way that the extension of f + g to an element of $\mathcal{C}(X)$ is the sum of extensions of f and g, respectively (one should note

that in 1951 Dugundji [7] generalized Borsuk's theorem for continuous mappings into a locally convex linear space, instead of \mathbb{R} , but in this paper we do not consider such kinds of extensions; we confine our studies only to real-valued functions).

The first results concerning the case of the Borsuk-Dugundji theorem for spaces of differentiable functions came from Merrien [11] and Bromberg [5], and for spaces of analytic mappings - from Aron and Berner [1]. In 2007, Fefferman [8] obtained a generalization of Merrien's and Bromberg's results. He proved that if $C^m(E)$ denotes the space of restrictions to $E \subset \mathbb{R}^n$ of m-differentiable functions $f: \mathbb{R}^n \to \mathbb{R}$, then there is a linear and continuous operator $T: \mathcal{C}^m(E) \to \mathcal{C}^m(\mathbb{R}^n)$ such that $T(f_{\uparrow E}) = f$.

A natural question related to the above-mentioned results and problem (P) reads as follows: Does there exist a larger class of functions, including the class of continuous functions, where Tietze-type theorems hold true? This question has a few positive answers. A first result of this kind is due to Kuratowski [10]: in 1933 he obtained a Tietze-type result for functions of the first Baire class defined on G_{δ} -subsets of a metric space, and not until 2005 Kalenda and Spurný [9] extended Kuratowski's theorem for completely regular spaces. On the other hand, in 2010 we proved [12] that if X is a P-space (i.e., every G_{δ} -subset of X is open) then $\mathfrak{C}(X) = \mathfrak{U}(X)$, and thus (formally) for every closed subset A of X, every $f_0 \in \mathfrak{U}(A)$ can be extended to $f \in \mathfrak{U}(X)$. This observation has led us to the conjecture that a Tietze-type theorem should hold for the class of closed graph functions defined on some subsets of a Hausdorff space X. The conjecture is confirmed in our Theorem 3.2 below, where we show that there is a positively affine extension operator from $\mathfrak{U}(A)$ into $\mathfrak{U}(X)$, where A is a zero-subset of X.

2. NOTATIONS AND DEFINITIONS

For every subset $A \subset X$, let $\operatorname{cl}(A)$, $\operatorname{int}(A)$ and $\operatorname{bd}(A)$ denote the closure, interior and boundary of A, respectively. The spaces $\mathbb R$ and $X \times \mathbb R$ are considered with their standard topologies. A function $f \colon X \to \mathbb R$ is piecewise continuous if there are nonempty closed sets $X_n \subset X$, $n \in \mathbb N$ such that $X = \bigcup_{n=0}^\infty X_n$ and the restriction $f_{\restriction X_n}$ is continuous for each $n \in \mathbb N$. For every function $f \colon X \to \mathbb R$, the symbol G(f) denotes the graph of f, and the symbols C(f) and D(f) (= $X \setminus C(f)$) denote the sets of continuity and discontinuity points of f, respectively. We say that $f \colon X \to \mathbb R$ is a function with a closed graph, if G(f) is a closed subset of $X \times \mathbb R$. The symbol $\mathfrak{U}^+(X)$ stands for the set of all non-negative elements of $\mathfrak{U}(X)$.

In 1985, Doboš [6] proved that the sum of two non-negative functions with a closed graph is a function with a closed graph. Since $0 \in \mathcal{U}^+(X)$, we have

$$\mathcal{U}^{+}(X) + \mathcal{U}^{+}(X) = \mathcal{U}^{+}(X). \tag{2.1}$$

Notice, however, that $\mathcal{U}^+(X) - \mathcal{U}^+(X) \neq \mathcal{U}(X)$, i.e. there is an example of a space X and functions $f, g \in \mathcal{U}^+(X)$ such that $f - g \notin \mathcal{U}(X)$ (see [6, p. 9]).

Definition 2.1. Let L_1, L_2 be two cones in linear spaces E_1, E_2 , respectively (i.e. $L_i + L_i \subset L_i$, $aL_i \subset L_i$, i = 1, 2, for every $a \in \mathbb{R}^+$, and $L_i \cap (-L_i) = \{0\}$). We say that a mapping $T: L_1 \to L_2$ is positively affine if, for any elements $x, y \in L_1$ and $a, b \in \mathbb{R}^+$ such that a + b = 1, we have T(ax + by) = aT(x) + bT(y).

3. MAIN THEOREM

Let X be a topological space, let A be a nonempty zero-set (i.e. $A = [g = 0] := g^{-1}(0)$ for some $g \in \mathcal{C}(X)$), and let $f_0 : A \to \mathbb{R}$ be a function with a closed graph. The symbol $f_{(A,g)}$ denotes a real function defined on X of the form

$$f_{(A,g)}(x) = \begin{cases} f_0(x), & x \in A, \\ \frac{1}{g(x)}, & x \notin A. \end{cases}$$

$$(3.1)$$

To simplify notations, for A and g fixed, we write f instead of $f_{(A,g)}$. The symbol $\operatorname{Ext}_{(A,g)}$ denotes a mapping $\mathbb{R}^A \to \mathbb{R}^X$ defined by the formula

$$\operatorname{Ext}_{(A,g)}(f_0) = f.$$

Remark 3.1. From the above definitions it follows that if $A = g_1^{-1}(0) = g_2^{-1}(0)$ and $g_1 \neq g_2$, then $f_{(A,g_1)} \neq f_{(A,g_2)}$, and hence $\operatorname{Ext}_{(A,g_1)}(f) \neq \operatorname{Ext}_{(A,g_2)}(f)$ for every $f \in \mathbb{R}^A$.

The main result of this paper reads as follows.

Theorem 3.2. Let X be a topological Hausdorff space, let A be a nonempty zero-subset of X, and let $f_0: A \to \mathbb{R}$ be a map with a closed graph. Then

- (a) there is a function $f: X \to \mathbb{R}$ with a closed graph such that $f_{\uparrow A} = f_0$, and
- (b) the set D(f), of points of discontinuity of f, is of the form

$$D(f) = D(f_0) \cup \operatorname{bd} A. \tag{3.2}$$

More exactly, for every fixed function $g \in \mathcal{C}(X)$ such that $A = g^{-1}(0)$, the operator $\operatorname{Ext}_{(A,g)}$ defined above maps $\mathcal{U}(A)$ into $\mathcal{U}(X)$ and is positively affine.

One should note that from formula (2) it follows that the resulting function f is unbounded and discontinuous, in general, unless the set A is closed and open.

Proof. We shall prove first that the mapping $f = f_{(A,g)}$ defined by formula (3.1) has a closed graph. Let (x_{δ}) be a Moore-Smith (MS) sequence such that $x_{\delta} \to x$ and $f(x_{\delta}) \to t$.

If $x \notin A$, the continuity of g implies that $t = \frac{1}{g(x)} = f(x)$.

For $x \in A$, we consider the following two cases:

- (i) $x \in \operatorname{int} A \neq \emptyset$,
- (ii) $x \in A \setminus \text{int } A$.

In case (i), the nonempty set int A is open, thus there is α_0 such that $x_{\alpha} \in \text{int } A$ for every $\alpha > \alpha_0$. Therefore $f(x_{\alpha}) = f_0(x_{\alpha}) \to t$ and $t = f_0(x) = f(x)$ because f_0 has a closed graph.

In case (ii), we have $f(x) = f_0(x)$ and g(x) = 0. We claim there is β such that, for every $\alpha > \beta$, we have $x_{\alpha} \in A$. Indeed, otherwise, for every index β there would be an index $\alpha_{\beta} > \beta$ such that $x_{\alpha_{\beta}} = y_{\beta} \in X \setminus A$. Then

$$f(y_{\beta}) = \frac{1}{g(y_{\beta})} \to t \neq 0$$

(the case t = 0 is impossible, because then we would have $|g(y_{\beta})| \to \infty$ with $y_{\beta} \to x$, which contradicts the continuity of g at x). Hence

$$g(y_{\beta}) \to \frac{1}{t} \in (0, \infty).$$
 (3.3)

On the other hand, the continuity of g implies that $g(y_{\beta}) \to g(x) = 0$, which contradicts (3.3). Thus, there is an element β such that, for any index $\alpha > \beta$, we have $f(x_{\alpha}) = f_0(x_{\alpha}) \to t$. Now the closedness of the graph of f_0 implies that $t = f_0(x) = f(x)$. We thus have showed that f has a closed graph, as claimed.

Now we shall prove equality (3.2); equivalently,

$$D(f) = (X \setminus C(f_0)) \cup \Big(A \cap (X \setminus \operatorname{int} A)\Big). \tag{3.4}$$

Let us fix $x \in D(f)$. Suppose, by way of contradiction, that $x \notin D(f_0) \cup \operatorname{bd} A$. Then, by (3.4), we have $x \in C(f_0) \cap \left[(X \setminus A) \cup \operatorname{int} A \right]$, whence $x \in C(f_0)$ and $x \in (X \setminus A) \cup \operatorname{int} A$. If $x \in X \setminus A$, we have $f(x) = \frac{1}{g(x)}$, whence $x \in C(g) \subset C(f)$, and if $x \in \operatorname{int} A \neq \emptyset$, we have $f(x) = f_0(x)$, and hence $x \in C(f_{\mid_{\operatorname{int} A}}) \subset C(f)$. In both the cases we thus have $x \in C(f)$, contrary to our hypothesis. We thus have shown that

$$D(f) \subset D(f_0) \cup \operatorname{bd} A.$$
 (3.5)

For the proof of the reversed inclusion to (3.5), let us fix $x \in D(f_0) \cup \operatorname{bd} A$. Assume first that $x \in D(f_0)$. Since each point of the discontinuity of f_0 is a point of the discontinuity of f, we obtain $x \in D(f)$. Moreover, if $x \in \operatorname{bd} A = A \cap (X \setminus \operatorname{int} A)$, there is an MS-sequence $(x_{\delta}) \subset X \setminus A$ convergent to x. By the continuity of g, we obtain $\frac{1}{f(x_{\delta})} = g(x_{\delta}) \to 0$. Therefore $|f(x_{\alpha})| \to \infty$, whence $x \in D(f)$. We thus have shown that if $x \in D(f_0) \cup \operatorname{bd} A$ then $x \in D(f)$, i.e.,

$$D(f_0) \cup \operatorname{bd} A \subset D(f).$$
 (3.6)

Combining inclusions (3.5) and (3.6), we obtain (3.2). Obviously, $\operatorname{Ext}_{(A,g)}$ is positively affine. The proof is complete.

The following corollary is an immediate consequence of Theorem 3.2.

Corollary 3.3. Let A be a closed and G_{δ} (closed, respectively) subset of a normal (perfectly normal, respectively) space X. Then there is a positively affine extension operator Ext: $\mathcal{U}(A) \to \mathcal{U}(X)$.

Notice that the Tietze theorem asserts that if A is a closed subset of a normal space X, then the restriction from $\mathcal{C}(X)$ to $\mathcal{C}(A)$ is surjective. From Theorem 3.2 we obtain a similar result.

Corollary 3.4. Let X be a topological Hausdorff space, and let A be a zero-set. Then the restriction operator $r_A : \mathcal{U}(X) \to \mathcal{U}(A)$ (given by $r_A(f) = f_{\uparrow A}$) is a surjection.

In two examples below we show that the requirement in Corollary 3.3, "A to be a closed subset of X" cannot be replaced by the weaker condition: "A to be an F_{σ} -set". We do not know, however, if the hypothesis of Theorem 1 about A is essential, i.e., we cannot indicate a closed and non zero-subset A of a Hausdorff space X such that some $f_0 \in \mathcal{U}(A)$ cannot be extended to an element of $\mathcal{U}(X)$.

In Example 3.5 we address an "extremely bad" case: there is a nonempty F_{σ} -subset A of a metric space X and $f \in \mathcal{U}(A)$ such that, for every subset B of A such that $\operatorname{int}(\operatorname{cl}(B)) \neq \emptyset$, the restriction $f_{\uparrow B}$ cannot be extended to an element of $\mathcal{U}(\operatorname{cl}(B))$.

Example 3.5. Let X = [0,1] be the unit interval with the standard topology. Set $A = (0,1) \cap \mathbb{Q} \subset X$, and let B be any fixed subset of A such that $\operatorname{int}(\operatorname{cl} B) \neq \emptyset$. Let $f \colon A \to \mathbb{R}$ be a function defined as $f(\frac{m}{n}) = n$ with m, n positive integers and $\frac{m}{n}$ irreducible. Then f is a function with a closed graph which is discontinuous at every point of A (due to the fact, that the number of irreducible fractions in A with a given denominator is finite). Since $\operatorname{int}(\operatorname{cl} B) \neq \emptyset$, there are real numbers 0 < a < b < 1 such that $[a,b] \subset \operatorname{cl} B$. Suppose that $f_B := f_{\uparrow B}$ can be extended to $\overline{f_B} \in \mathcal{U}(\operatorname{cl} B)$. Then (see $[3, \operatorname{Lemma 2.2}]$) $\overline{f_B}$ is piecewise continuous, and thus there is a sequence (B_n) of closed subsets of [a,b] such that $[a,b] = \bigcup_{n=1}^{\infty} B_n$ and the restriction $\overline{f_B}_{\uparrow B_n}$ is continuous for each $n \in \mathbb{N}$. Then, by the Baire property, there is a number $n_0 \in \mathbb{N}$ such that $\operatorname{int}(B_{n_0}) \neq \emptyset$. Hence there is a nonempty interval (c,d) contained in B_{n_0} . Thus, by the continuity of the restrictions $\overline{f_B}_{\uparrow B_n}$, every rational number $\xi \in (c,d)$ would be the point of continuity of $\overline{f_B}$, and thus the point of continuity of $f_B = f_{\uparrow B}$, but this contradicts the discontinuity of f.

In the next example we show that the hypothesis in Corollary 3.3: "A is closed" cannot be replaced by "A is open F_{σ} ". But now, in contrast to Example 3.5, there are subsets $B \subset A$ such that $\operatorname{int}(B) \neq \emptyset$ and $f_{\upharpoonright B}$ has an extension to an element of $\mathfrak{U}(\operatorname{cl}(B))$.

Example 3.6. Let $X = \mathbb{R}$ and $A = (0, \infty)$. Thus A is an open and F_{σ} subset of X. Let $f_0 \colon (0, \infty) \to \mathbb{R}$ be a map given by the formula $f_0(x) = \sin \frac{1}{x}$. The function f_0 is of course continuous at every point $x \in A$, whence $f_0 \in \mathcal{U}(A)$. However, the function f_0 cannot be extended to any function $f \colon [0, \infty) \to \mathbb{R}$ with a closed graph because $\operatorname{cl} G(f_0) \supset \{0\} \times [-1, 1]$.

REFERENCES

- R.M. Aron, P.D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978) 1, 3-24.
- [2] I. Baggs, Functions with a closed graph, Proc. Amer. Math. Soc. 43 (1974), 439-442.

- [3] J. Borsík, J. Doboš, M. Repický, Sums of quasicontinuous functions with closed graphs, Real Anal. Exch. 25 (1999/2000), 679–690.
- [4] K. Borsuk, Über Isomorphic der Funktionalräume, Bull. Int. Acad. Polon. Sci. (1933), 1–10.
- [5] S. Bromberg, An extension in class C^1 , Bol. Soc. Mat. Mex. II, Ser. 27 (1982), 35–44.
- [6] J. Doboš, Sums of closed graph functions, Tatra Mt. Math. Publ. 14 (1998), 9–11.
- [7] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353–367.
- [8] C.L. Fefferman, C^m extension by linear operators, Annals of Math. 166 (2007) 3, 779–835.
- [9] O.F.K. Kalenda, J. Spurný, Extending Baire-one functions on topological spaces, Topology Appl. 149 (2005) 1–3, 195–216.
- [10] K. Kuratowski, Sur les théorèmes topologiques de la théorie des fonctions de variables réelles, C. R. Acad. Sci. Paris 197 (1933), 19–20.
- [11] J. Merrien, Prolongateurs de fonctions difféntiables d'une variable réelle, J. Math. Pures Appl. 45 (1966) 9, 291–309.
- [12] M. Wójtowicz, W. Sieg, P-spaces and an unconditional closed graph theorem, RACSAM 104 (2010) 1, 13–18.

Marek Wójtowicz mwojt@ukw.edu.pl

Uniwersytet Kazimierza Wielkiego Instytut Matematyki Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland

Waldemar Sieg waldeks@ukw.edu.pl

Uniwersytet Kazimierza Wielkiego Instytut Matematyki Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland

Received: October 16, 2014. Accepted: December 10, 2014.