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Abstract. Let A be a closed Gδ-subset of a normal space X. We prove that every function
f0 : A→ R with a closed graph can be extended to a function f : X → R with a closed graph,
too. This is a consequence of a more general result which gives an affine and constructive
method of obtaining such extensions.
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1. INTRODUCTION

Let C(A) denote the set of all continuous functions on a nonempty subset A of
a Hausdorff space X. In this paper, every considered function is real. The set of all
closed-graph functions on X is denoted by U(X). Obviously C(X) ⊂ U(X). This paper
deals with the following general problem in the theory of real functions, which is
inspired by the Tietze extension theorem:

(P) Let A be a nonempty subset of a topological space X and let f0 ∈ RA
be a function with a certain property (W ). Can f0 be extended to a function
f ∈ RX with the same property (W )?

It is well known that if X is a metric space, and A is a closed subset of X, the Tietze
theorem can be significantly strengthened: In 1933 Borsuk [4] proved that there is
a positive linear operator Ext from C(A) into C(X) such that Ext(f0)�A = f0 for
every f0 ∈ C(A); furthermore, the restriction of Ext to the space Cb(A) of all bounded
elements of C(A) is a positive isometry into Cb(X). Thus, the Borsuk’s operator Ext
was the first example of a linear extension operator: its existence proved it is possible
to extend two functions f, g ∈ C(A) in such a way that the extension of f + g to an
element of C(X) is the sum of extensions of f and g, respectively (one should note
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that in 1951 Dugundji [7] generalized Borsuk’s theorem for continuous mappings into
a locally convex linear space, instead of R, but in this paper we do not consider such
kinds of extensions; we confine our studies only to real-valued functions).

The first results concerning the case of the Borsuk-Dugundji theorem for spaces
of differentiable functions came from Merrien [11] and Bromberg [5], and for spaces
of analytic mappings - from Aron and Berner [1]. In 2007, Fefferman [8] obtained a
generalization of Merrien’s and Bromberg’s results. He proved that if Cm(E) denotes
the space of restrictions to E ⊂ Rn of m-differentiable functions f : Rn → R, then
there is a linear and continuous operator T : Cm(E)→ Cm(Rn) such that T (f�E) = f .

A natural question related to the above-mentioned results and problem (P) reads
as follows: Does there exist a larger class of functions, including the class of continuous
functions, where Tietze-type theorems hold true? This question has a few positive
answers. A first result of this kind is due to Kuratowski [10]: in 1933 he obtained
a Tietze-type result for functions of the first Baire class defined on Gδ-subsets of
a metric space, and not until 2005 Kalenda and Spurný [9] extended Kuratowski’s
theorem for completely regular spaces. On the other hand, in 2010 we proved [12]
that if X is a P -space (i.e., every Gδ-subset of X is open) then C(X) = U(X), and
thus (formally) for every closed subset A of X, every f0 ∈ U(A) can be extended
to f ∈ U(X). This observation has led us to the conjecture that a Tietze-type
theorem should hold for the class of closed graph functions defined on some subsets of
a Hausdorff space X. The conjecture is confirmed in our Theorem 3.2 below, where we
show that there is a positively affine extension operator from U(A) into U(X), where
A is a zero-subset of X.

2. NOTATIONS AND DEFINITIONS

For every subset A ⊂ X, let cl(A), int(A) and bd(A) denote the closure, interior and
boundary of A, respectively. The spaces R and X×R are considered with their standard
topologies. A function f : X → R is piecewise continuous if there are nonempty closed
sets Xn ⊂ X, n ∈ N such that X =

⋃∞
n=0 Xn and the restriction f�Xn is continuous

for each n ∈ N. For every function f : X → R, the symbol G(f) denotes the graph of
f , and the symbols C(f) and D(f) (= X \ C(f)) denote the sets of continuity and
discontinuity points of f , respectively. We say that f : X → R is a function with a
closed graph, if G(f) is a closed subset of X × R. The symbol U+(X) stands for the
set of all non-negative elements of U(X).

In 1985, Doboš [6] proved that the sum of two non-negative functions with a closed
graph is a function with a closed graph. Since 0 ∈ U+(X), we have

U+(X) + U+(X) = U+(X). (2.1)

Notice, however, that U+(X)− U+(X) 6= U(X), i.e. there is an example of a space X
and functions f, g ∈ U+(X) such that f − g /∈ U(X) (see [6, p. 9]).
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Definition 2.1. Let L1, L2 be two cones in linear spaces E1, E2, respectively (i.e.
Li + Li ⊂ Li, aLi ⊂ Li, i = 1, 2, for every a ∈ R+, and Li ∩ (−Li) = {0}). We say
that a mapping T : L1 → L2 is positively affine if, for any elements x, y ∈ L1 and
a, b ∈ R+ such that a+ b = 1, we have T (ax+ by) = aT (x) + bT (y).

3. MAIN THEOREM

Let X be a topological space, let A be a nonempty zero-set (i.e. A =
[g = 0] := g−1(0) for some g ∈ C(X)), and let f0 : A → R be a function with a
closed graph. The symbol f(A,g) denotes a real function defined on X of the form

f(A,g)(x) =
{
f0(x), x ∈ A,

1
g(x) , x /∈ A. (3.1)

To simplify notations, for A and g fixed, we write f instead of f(A,g). The symbol
Ext(A,g) denotes a mapping RA → RX defined by the formula

Ext(A,g)(f0) = f.

Remark 3.1. From the above definitions it follows that if A = g−1
1 (0) = g−1

2 (0)
and g1 6= g2, then f(A,g1) 6= f(A,g2), and hence Ext(A,g1)(f) 6= Ext(A,g2)(f) for every
f ∈ RA.

The main result of this paper reads as follows.

Theorem 3.2. Let X be a topological Hausdorff space, let A be a nonempty zero-subset
of X, and let f0 : A→ R be a map with a closed graph. Then

(a) there is a function f : X → R with a closed graph such that f�A = f0, and
(b) the set D(f), of points of discontinuity of f , is of the form

D(f) = D(f0) ∪ bdA. (3.2)

More exactly, for every fixed function g ∈ C(X) such that A = g−1(0), the operator
Ext(A,g) defined above maps U(A) into U(X) and is positively affine.

One should note that from formula (2) it follows that the resulting function f is
unbounded and discontinuous, in general, unless the set A is closed and open.

Proof. We shall prove first that the mapping f = f(A,g) defined by formula (3.1) has
a closed graph. Let (xδ) be a Moore-Smith (MS) sequence such that xδ → x and
f(xδ)→ t.

If x /∈ A, the continuity of g implies that t = 1
g(x) = f(x).

For x ∈ A, we consider the following two cases:

(i) x ∈ intA 6= ∅,
(ii) x ∈ A \ intA.
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In case (i), the nonempty set intA is open, thus there is α0 such that xα ∈ intA
for every α > α0. Therefore f(xα) = f0(xα)→ t and t = f0(x) = f(x) because f0 has
a closed graph.

In case (ii), we have f(x) = f0(x) and g(x) = 0. We claim there is β such that, for
every α > β, we have xα ∈ A. Indeed, otherwise, for every index β there would be an
index αβ > β such that xαβ = yβ ∈ X \A. Then

f(yβ) = 1
g(yβ) → t 6= 0

(the case t = 0 is impossible, because then we would have |g(yβ)| → ∞ with yβ → x,
which contradicts the continuity of g at x). Hence

g(yβ)→ 1
t
∈ (0,∞). (3.3)

On the other hand, the continuity of g implies that g(yβ)→ g(x) = 0, which contradicts
(3.3). Thus, there is an element β such that, for any index α > β, we have f(xα) =
f0(xα)→ t. Now the closedness of the graph of f0 implies that t = f0(x) = f(x). We
thus have showed that f has a closed graph, as claimed.

Now we shall prove equality (3.2); equivalently,

D(f) = (X \ C(f0)) ∪
(
A ∩ (X \ intA)

)
. (3.4)

Let us fix x ∈ D(f). Suppose, by way of contradiction, that x /∈ D(f0)∪bdA. Then, by
(3.4), we have x ∈ C(f0)∩

[
(X \A)∪ intA

]
, whence x ∈ C(f0) and x ∈ (X \A)∪ intA.

If x ∈ X \A, we have f(x) = 1
g(x) , whence x ∈ C(g) ⊂ C(f), and if x ∈ intA 6= ∅, we

have f(x) = f0(x), and hence x ∈ C(f�intA) ⊂ C(f). In both the cases we thus have
x ∈ C(f), contrary to our hypothesis. We thus have shown that

D(f) ⊂ D(f0) ∪ bdA. (3.5)

For the proof of the reversed inclusion to (3.5), let us fix x ∈ D(f0) ∪ bdA. Assume
first that x ∈ D(f0). Since each point of the discontinuity of f0 is a point of the
discontinuity of f , we obtain x ∈ D(f). Moreover, if x ∈ bdA = A∩ (X \ intA), there
is an MS-sequence (xδ) ⊂ X \ A convergent to x. By the continuity of g, we obtain

1
f(xδ) = g(xδ)→ 0. Therefore |f(xα)| → ∞, whence x ∈ D(f). We thus have shown
that if x ∈ D(f0) ∪ bdA then x ∈ D(f), i.e.,

D(f0) ∪ bdA ⊂ D(f). (3.6)

Combining inclusions (3.5) and (3.6), we obtain (3.2). Obviously, Ext(A,g) is positively
affine. The proof is complete.

The following corollary is an immediate consequence of Theorem 3.2.
Corollary 3.3. Let A be a closed and Gδ (closed, respectively) subset of a normal
(perfectly normal, respectively) space X. Then there is a positively affine extension
operator Ext: U(A)→ U(X).



Affine extensions of functions with a closed graph 977

Notice that the Tietze theorem asserts that if A is a closed subset of a normal
space X, then the restriction from C(X) to C(A) is surjective. From Theorem 3.2 we
obtain a similar result.
Corollary 3.4. Let X be a topological Hausdorff space, and let A be a zero-set. Then
the restriction operator rA : U(X)→ U(A) (given by rA(f) = f�A) is a surjection.

In two examples below we show that the requirement in Corollary 3.3, “A to be a
closed subset of X” cannot be replaced by the weaker condition: “A to be an Fσ-set”.
We do not know, however, if the hypothesis of Theorem 1 about A is essential, i.e.,
we cannot indicate a closed and non zero-subset A of a Hausdorff space X such that
some f0 ∈ U(A) cannot be extended to an element of U(X).

In Example 3.5 we address an “extremely bad” case: there is a nonempty Fσ-subset
A of a metric space X and f ∈ U(A) such that, for every subset B of A such that
int(cl(B)) 6= ∅, the restriction f�B cannot be extended to an element of U (cl(B)).
Example 3.5. Let X = [0, 1] be the unit interval with the standard topology. Set
A = (0, 1) ∩ Q ⊂ X, and let B be any fixed subset of A such that int(clB) 6= ∅.
Let f : A→ R be a function defined as f(mn ) = n with m,n positive integers and m

n
irreducible. Then f is a function with a closed graph which is discontinuous at every
point of A (due to the fact, that the number of irreducible fractions in A with a given
denominator is finite). Since int(clB) 6= ∅, there are real numbers 0 < a < b < 1 such
that [a, b] ⊂ clB. Suppose that fB := f�B can be extended to fB ∈ U (clB). Then (see
[3, Lemma 2.2]) fB is piecewise continuous, and thus there is a sequence (Bn) of closed
subsets of [a, b] such that [a, b] =

⋃∞
n=1 Bn and the restriction fB�Bn is continuous

for each n ∈ N. Then, by the Baire property, there is a number n0 ∈ N such that
int (Bn0) 6= ∅. Hence there is a nonempty interval (c, d) contained in Bn0 . Thus, by
the continuity of the restrictions fB�Bn , every rational number ξ ∈ (c, d) would be
the point of continuity of fB, and thus the point of continuity of fB = f�B, but this
contradicts the discontinuity of f .

In the next example we show that the hypothesis in Corollary 3.3: “A is closed”
cannot be replaced by “A is open Fσ”. But now, in contrast to Example 3.5, there
are subsets B ⊂ A such that int(B) 6= ∅ and f�B has an extension to an element of
U (cl(B)).
Example 3.6. Let X = R and A = (0,∞). Thus A is an open and Fσ subset of X.
Let f0 : (0,∞)→ R be a map given by the formula f0(x) = sin 1

x . The function f0 is
of course continuous at every point x ∈ A, whence f0 ∈ U(A). However, the function
f0 cannot be extended to any function f : [0,∞) → R with a closed graph because
clG(f0) ⊃ {0} × [−1, 1].
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