PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Discussion on importance of tungsten carbide – cobalt (WC-Co) cemented carbide and its critical characterization for wear mechanisms based on mining applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Omówienie roli węglika spiekanego z kobaltem WC-Co oraz określenie jego kluczowej charakterystyki niezbędnej do rozpoznania mechanizmów zużycia w kontekście zastosowań w górnictwie
Języki publikacji
EN
Abstrakty
EN
Cemented carbide (CC) is an important material for the mining tools. During mining applications, the service life of the CC gets highly reduced due to complex conditions offered by mines. In various applications, such as, rock drilling and coal cutting, the tools show different type of wear behaviour. Wear assessment has been an important area of research for a long time. In order to develop improved mechanical properties in the tools, it is necessary to know the characteristics and cause of wear mechanisms. For analyzing wear mechanisms in the CC, researchers have adopted mainly three different conditions. They are: rock drilling, coal cutting, and laboratory wear test methods. In the present work, an attempt has been made to review and summarize all those wear mechanisms found in the CC. The causes and effects of each mechanism are also explained comprehensively. In addition, various properties of recently developed cemented carbide have also been discussed.
PL
Węglik spiekany (CC) jest znanym od dawna lecz wciąż powszechnie używanym twardym stopem metalu. Korzystne właściwości węglika spiekanego sprawiają, że jest niezwykle pożądanym materiałem z którego wykonywane są narzędzia górnicze. W trakcie prowadzenia wierceń w skałach i urabiania skał, narzędzia pracują w bardzo złożonych warunkach i różnorodnych zastosowaniach, stąd też wykazują różne oznaki zużycia zmęczeniowego. Ponieważ zużycie materiału skraca okres eksploatacji narzędzi, wielu badaczy podjęło się badań nad tym zagadnieniem. Kwestia oceny zużycia zmęczeniowego narzędzi wykonanych z węglika spiekanego badana jest od dłuższego czasu. Niezbędne jest poznanie charakterystyki procesu zużycia zmęczeniowego i jego przyczyn tak by można wyodrębnić do badania narzędzia nadające się do dłuższej eksploatacji, tym samym poprawiając opłacalność produkcji. Badano rozmaite mechanizmy zużycia zmęczeniowego węglików spiekanych związane z użytkowaniem narzędzi w wiertnictwie oraz urabianiu skał, opracowano także laboratoryjne metody jego badania. W artykule tym podjęto próbę zebrania i usystematyzowania wszystkich mechanizmów zużycia zmęczeniowego, jakiemu podlegają narzędzia wykonane z węglików spiekanych. Przyczyny i skutki każdego z procesów rozpatrywano w ujęciu całościowym. Ponadto, omówiono właściwości niedawno opracowanych węglików spiekanych.
Rocznik
Strony
229--246
Opis fizyczny
Bibliogr. 84 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical Engineering, Jaypee University of Engineering and Technology, Guna-473226, Madhya Pradesh, India
autor
  • Mechanical Engineering, National Institute of Science and Technology, Berhampur
  • Department of Mechanical Engineering, Indian Institute of Technology (ISM), Dhanbad-826004, Jharkhand, India
autor
  • Opole University of Technology, 76 Proszkowska St., 45-758 Opole, Poland
autor
  • Technical Universities of Košice With a Seat in Prešov, 080 01 Presov, Slovak Republic
Bibliografia
  • [1] Akerman J.G.H., Fischer U.K.R., Hartzell E.T., 1995. Cemented carbide body with extra tough behavior. US Patent 5, 453, 241.
  • [2] Aylward G., Friendly T., 1994. SI Chemical Data. ed. P. Storer. John Wiley & Sons, Sydney.
  • [3] Beste U. et al., 2001. Particle erosion of cemented carbides with low Co content. Wear, 250, 809-817.
  • [4] Beste U. et al., 2001. Surface damage on cemented carbide rock drill buttons. Wear, 249, 324-329.
  • [5] Beste U., 2004. On the Nature of Cemented carbide Wear in Rock Drilling. Acta Universitatis Upsaliensis. Comprehensive summary of Uppasala dissertations from the faculty of Sc. and Tech. 964.
  • [6] Beste U., Jacobson S., 2002. Friction between a cemented carbide rock drill button and different rock types. Wear, 253, 1219-1221.
  • [7] Beste U., Jacobson S., 2003. Micro scale hardness distribution of rock types related to rock drill wear. Wear, 254, 1147-1154.
  • [8] Beste U., Jacobson S., 2008. A new view of the deterioration and wear of WC/Co cemented carbide rock drill buttons. Wear, 264, 1129-1141.
  • [9] Beste U., Jacobson S., Hogmark S., 2008. Rock penetration into cemented carbide drill buttons during rock drilling. Wear, 264, 1142-51.
  • [10] Bilgin N., Copur H., Balci C., 2013. Mechanical excavation in mining and civil industries. CRC Press, Boca Raton, 103-123.
  • [11] Blomberry R.I., Perrot C.M., Robinson P.M., 1974. Abrasive wear of tungsten carbide-cobalt composites. I. Wear mechanisms. Materials Scinece and Engineering, 13, 93-100.
  • [12] Brookes K.J.A., 1992. Hardmetals and Other Hard Materials. International Carbide Data.
  • [13] Butler B.G., Lu J., Fang Z.Z., Rajamani R.K., 2007. Production of nanometric tungsten carbide powders by planetary milling. Int. J. Powder Metall., 43, 35-43.
  • [14] Cemented Carbide, Sandvik new developments and applications. Ref no. H-9116 ENG. (Edited 2005), www.hardmaterials. sandvik.com.
  • [15] Cha S.I. et al., 2001. Mechanical properties of WC-10Co cemented carbides sintered from nanocrystalline spray conversion processed powders. Int. J. Refract. Met. Hard. Mater., 19, 397-403.
  • [16] Chiaia B., Borri- Brunetto M., Carpinteri A., 2013. Mathematical modelling of the mechanics of core drilling in geomaterials. Machining Sc. and Tech, 17, 1-25.
  • [17] Clark G.B., 1982. Principles of rock drilling and bit wear. Colorado School of Mines, Quarterly, Golden, 77, 91.
  • [18] Courtney T.H., 2000. Mechanical behaviour of materials. 2nd edition, McGraw-Hill.
  • [19] Desai V.M., Rao C.M., Kosel T.H., Fiore N.F., 1984. Effect of carbide size on the abrasion of cobalt-phase powder metallurgy alloys. Wear, 94, 89-101.
  • [20] Dewangan S., Chattopadhyaya S., 2015. Critical analysis of wear mechanisms in cemented carbide. Journal of materiale engineering and performance, 24, 2628-2636.
  • [21] Dewangan S., Chattopadhyaya S., 2016. Characterization of wear mechanisms in distorted conical picks after coal cutting. Rock Mech. Rock Eng., 49, 225-242.
  • [22] Dewangan S., Chattopadhyaya S., Hloch S., 2015a. Critical damage analysis of WC-Co tip of conical pick due to coal excavation in mines. Advances in materials science and engineering, 2015, 7.
  • [23] Dewangan S., Chattopadhyaya S., Hloch S., 2015b. Wear assessment of conical pick used in coal cutting operation. Rock Mech. Rock Eng., 48, 2129-2139.
  • [24] Dixon G., Wright R.N., Lee M., 1983. Processes involved in the wear of cemented carbide tools. Proc. Int. Conf. Wear Mater., 218-226.
  • [25] Dvoracek J., Sousedikova R., Vratny T., Jurekova Z., 2017. Global tungsten demand and supply forecast. Arch. Min. Sci., 62, 3-12.
  • [26] Echtenkamp A.L., 1978. Combating corrosion/wear with the hard carbide alloys. Proc. of the ASLE/ASME lubrication conf., Oct 24-26, Minneapolis.
  • [27] Engqvist H., Beste U., Axen N., 2000. The influence of pH on sliding wear of WC-based materials. International Journal of Refractory Metals and Hard Materials, 18, 103-109.
  • [28] Exner H.E., 1979. Physical and chemical nature of cemented carbides. International Materials Reviews, 24, 149-173.
  • [29] Fischer U.K.R., Hartzell E.T., Akerman J.G.H., 1988. Cemented carbide body used preferably for rock drilling and mineral cutting. US Patent No. 4,743,515.
  • [30] Fischer U.K.R., Hartzell E.T., Akerman J.G.H., 1989. Cemented carbide body with a binder phase gradient and method of making the same. US Patent No. 4, 820, 482.
  • [31] Fischer U.K.R., Waldenstrom M., Hartzell E.T., 1999. Cemented carbide body with increased wear resistance. US Patent No. 5,856,626.
  • [32] Fish B.G., Guppy G.A., Ruben J.T., 1959. Abrasive wear effects in rotary rock drilling. Trans. Inst. Min. Met., 68, 357-383.
  • [33] Gant A.J., Gee M.G., Roebuck B., 2005. Rotating wheel abrasion of WC/Co hardmetals. Wear, 258, 178-188.
  • [34] Gee M.G., 2010. Model scratch corrosion studies for WC/Co hardmetals. Wear. 268, 1170-1177.
  • [35] Gee M.G., Gant A., Roebuck B., 2007. Wear mechanisms in abrasion and erosion of WC/Co and related hardmetals. Wear, 263, 137-148.
  • [36] Hartzell E.T., Akerman J.G.H., Fischer U.K.R., 1995. Cemented carbide body used preferably for abrasive rock dribling and mineral cutting. US Patent No. 5, 401, 461.
  • [37] Hochstrasser (-Kurz) S., Mueller Y., Latkoczy C., Virtanen S., Schmutz P., 2007. Analytical characterization of the corrosion mechanisms of WC-Co by electrochemical methods and inductively coupled plasma mass spectroscopy. Corrosion sc., 49, 2002-2020.
  • [38] Human A.M., Exner H.E., 1996. Electrochemical behaviour of tungsten-carbide hardmetals. Material science and engineering A, 209, 180-191.
  • [39] Imasato S., Tokumoto K., Kitada T., Sakuguchi S., 1995. Propertiers of ultrafine grain binderless cemented carbide RCCFN. Int J Refract Met Hard Mater, 13, 305-312.
  • [40] Jia K., Fischer T.E., 1996. Abrasion resistance of nanostructured and conventional cemented carbides. Wear, 200, 206-214.
  • [41] Jiang X., 2005. The study on the preparation and microstructure of ultrafine cemented carbide. Master Thesis, Chong Qing University, China.
  • [42] Kindermann et al., 1999. High-temperature fatigue of cemented carbides under cyclic loads. Int. J. Refract. Met. Hard Mater., 17, 55-68.
  • [43] Krolczyk G., Legutko S., Raos P., 2013a. Cutting wedge wear examination during turning of duplex stainless steel. Tehnicki Vjesnik-Technical Gazette, 20, 413-418.
  • [44] Krolczyk G., Legutko S., Stoic A., 2013b. Influence of cutting parameters and conditions onto surface hardness of duplex stainless steel after turning process. Tehnicki Vjesnik-Technical Gazette, 20, 1077-1080.
  • [45] Larsen-Basse J., 1973. Wear of hard-metals in rock drilling: a survey of the literature. Powder Metall., 16, 1-32.
  • [46] Larsen-Basse J., 1983. Effect of composition, microstructure, and service conditions on the wear of cemented carbides. J. Met., 35, 35-42.
  • [47] Larsen-Basse J., 1985. Binder extrusion in sliding wear of WC-Co alloys. Wear, 105, 247-256.
  • [48] Lee G.H., Kang S., 2006. Sintering of nano-sized WC-Co powder produced by a gas reduction-carburization process. Journal of alloys and compounds, 419, 281-289.
  • [49] Liu Y., Wang H., Long Z., Liaw P., Yang J., Huang B., 2006. Microstructural evolution and mechanical behaviors of graded cemented carbides. Mater. Sci. Eng. A, 426, 346-54.
  • [50] Maidl B., Schmid L., Ritz W., Herrenknecht M., 2008. Hard rock tunnel boring machines. Ernst & Sohn, Berlin.
  • [51] Mari D., Gonseth D.R., 1993. A new look at carbide tool life. Wear, 165, 9-17.
  • [52] Maruda R., Legutko S., Krolczyk G., Raos P., 2015. Influence of cooling conditions on the machining process under MQCL and MQL conditions. Tehnicki Vjesnik-Technical Gazette, 22, 965-970.
  • [53] Milman Yu.V., Luyckx S., Northrop I.T., 1999. Influence of temperature, grain size and cobalt content on the hardness of WC-Co alloys. Int. J. Refract. Met. Hard Mater., 17, 39-44.
  • [54] Mishnaevsky L.L., 1995. Mathematical modeling of wear of cemented carbide tools in cutting brittle materials. Int. J. Machine Tools and Manufac., 35, 717-724.
  • [55] Montgomery R.S., 1968. The mechanism of percussive wear of tungsten carbide composites. Wear, 12, 309-329.
  • [56] Mukhopadhyay A., Basu B., 2011. Recent developments on WC-based bulk composites. J. Mater. Sci., 46, 571-89.
  • [57] Nahak S., Chattopadhyaya S., Dewangan S., Hloch S., Krolczyk G., Legutko S., 2017a. Microstructural study of failure phenomena in WC 94%-Co 6% hard metal alloy tips of radial picks. Advances in Science and Technology Research Journal, 11, 36-47.
  • [58] Nahak S., Dewangan S., Chattopadhyaya S., 2015. Discussion on wear phenomena in cemented carbide. Procedia Earth and Planetary Science, 11, 284-294.
  • [59] Nahak S., Dewangan S., Chattopadhyaya S., 2016. Wearing mechanisms of picks used in continuous miner machine for coal cutting. Journal of Mines, Metals & Fuels, 64, 128-135.
  • [60] Nahak S., Dewangan S., Chattopadhyaya S., Hloch S., 2017b. Characterization of failure behaviour in distorted WC-Co tip of coal mining picks. Journal of Failure Analysis and Prevention, 17, 136-143.
  • [61] O’quigley D.G.F., Luyckx S., James M.N., 1997. An empirical ranking of a wide range of WC–Co grades in terms of their abrasion resistance measured by the ASTM standard B 611-85 test. Int. J. Refract. Met. Hard Mater., 15, 73-79.
  • [62] Okamoto S., Nakazono Y., Otsuka K., Shimoitani Y., Takada J., 2005. Mechanical properties of WC/Co cemented carbide with larger WC grain size. Materials Characterization, 55, 281-287.
  • [63] Olovsjo S., Johanson R., Falsafi F., Bexell U., Olsson M., 2013. Surface failure and wear of cemented carbide rock drill buttons – The importance of sample preparation and optimized microscopy settings. Wear, 302, 1546-1554.
  • [64] Pastor H., 1997. Centenaire de la découverte du carbure de tungstène par Henri Moissan. historique du dévelopement de ce matériau. La Revue de Métallurgie-CIT/Science et Génie des Matériaux. 1537-1552.
  • [65] Perrot C.M., 1980. Abrasive wear of hard metal rock bits, in: Proceedings of the Conference on Lubrication Friction and Wear in Engineering, Melbourne.
  • [66] Pirso J., Letunovitš S., Viljus M., 2004. Friction and wear behaviour of cemented carbides. Wear, 257, 257-265.
  • [67] Prodrill. www.rock-drill-bits.com/t38/Threaded-Button-Bit-02.html.
  • [68] Raghunathan S., Caron R., Friederichs J., Sandell P., 1996. Tungsten carbides technologies. Advanced materials and processes, 4, 21-23.
  • [69] Rajput R.K., 2007. A text book of Manufacturing technology: Manufacturing processes. Firewall Media, India.
  • [70] Ren X., Miao H., Peng Z., 2013. A review of cemented carbides for rock drilling: An old but still tough challenge In geo-engineering. Int. Journal of Refractory Metals and Hard Materials, 39, 61-77.
  • [71] Rettenmayr M., Exner H.E., Mader W., 1988. Electron microscopy of binder phase deformation in WC-Co alloys. Mater. Sci. Technol., 4, 984-90.
  • [72] Schleinkofer U. et al., 1996. Microstructural processes during subcritical crack growth in hard metals and cermets under cyclic loads. Mater. Sci. Eng. A, 209, 103-10.
  • [73] Sheikh-Ahmad J.Y., Bailey J.A., 1999. The wear characteristics of some cemented tungsten carbides in machining particleboard. Wear, 225-229, 256-266.
  • [74] Singh G., 2006. A survey of corrosivity of underground mine waters from Indian coal mines. Int J. of mine water, International mine water association 2006/www.imwa.info.
  • [75] Swick K.J., Stachowiak G.W., Batchelor A.W., 1992., Mechanism of wear of rotary-percussive drilling bits and the effect of rock type on wear. Tribol. Int., 25, 83-8.
  • [76] The designer’s guide to tungsten carbide, www.generalcarbide.com.
  • [77] Tomlinson W.J., Linzell C.R., 1988. Anodic polarization and corrosion of cemented carbides with cobalt and nickel binders. J. Mater. Sc., 23, 914-918.
  • [78] Tong Z., Ding C., Yan D., 1991. Size and shape characteristics of wear debris of WC + Co coating sliding against 45 steel. Chin. J. Met. Sci. Technol. 7, 282-287.
  • [79] Tulhoff H., 2000. Carbides. Metal like carbides of industrial importance. Ullmann’s Encyclopedia of Industrial Chemistry.
  • [80] Wiley-VHC. doi: 10.1002/14356007.a05_061 Voorhies J.D., 1972. Electrochemical and chemical corrosion of tungsten carbide (WC). J. Electrochem. Soc., 119, 219-222.
  • [81] Wang X., Hwang K.S., Koopman M., Fang Z.Z., Zhang L., 2013. Mechanical properties and wear resistance of functionally graded WC-Co. Int. J. Refract. Met. Hard Mater., 36, 46-51.
  • [82] Wood G.A., 1970. Quality control in the hard metal industry. Powder Metallurgy, 13, s. 338-368.
  • [83] Zhang F.L., Wang C.Y., Zhu M., 2003. Nanostructured WC/Co composite powder prepared by high energy ball milling. Scr. Mater., 49, 1123-8.
  • [84] Zhang L., Wang Y.J., Yu X.W., Chen S., Xiong X.J., 2008. Crack propagation characteristic and toughness of functionally graded WC-Co cemented carbide. Int. J. Refract. Met. Hard Mater., 26, 295-300.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f712d456-304a-489b-be62-a6fb8f8ecf90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.