PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal control for a vibration control system with dead zone compensate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims to improve an active suspension system of vehicles by developing an optimal control strategy. Design/methodology/approach This work proposes a Linear Matrix Inequality (LMI) hybrid based on Liner Quadratic Integral LQI. The LMI-LQI hybrid closed-loop control is used to enhance the main parameters for the closed-loop control of the active suspension system to compensate for the dead zone nonlinearity effect in the actuator and enhance the dynamic performance of the system. An active suspension system of a quarter-vehicle with 3 DOF is considered to examine the system. Findings MATLAB/Environment was used to simulate a comparison between the proposed active control LMI-LQI system with dead zone input performance and active control LMI-LQI system performance with passive system performance. Research limitations/implications It is concluded that the proposed hybrid control improves the system performance in terms of ride comfort and safety by reducing the RMS (root mean square) seat acceleration by 93% for the LMI-LQI control system with dead zone input and 97% for the LMI-LQI system compared to the passive system. In addition, the suspension travel is reduced by 82% compared to the passive system. Originality/value The LMI-LQI control technique is proposed to design active suspension systems. According to the simulated results, the controller action is robust and realisable because it has the potential to minimise the nonlinear effect of the dead zone and the vertical acceleration, thus enhancing ride comfort.
Rocznik
Strony
102--110
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Al-Mussaib Technical Institute, Al-Furat Al-Awsat Technical University, Babil, Iraq
autor
  • Prosthetics and Orthotics Engineering Department, College of Engineering, University of Kerbala, Iraq
  • Al-Mussaib Technical Institute, Al-Furat Al-Awsat Technical University, Babil, Iraq
Bibliografia
  • [1] M. Appleyard, P.E. Wellstead, Active suspensions: some background, IEE Proceedings - Control Theory and Applications 142/2 (1995) 123-128. DOI: https://doi.org/10.1049/ip-cta:19951735
  • [2] K.J. Kadhim, Experimental investigation of the effect of damping coefficients on spring diameter thickness, Journal of Achievements in Materials and Manufacturing Engineering 115/1 (2022) 16-25. DOI: https://doi.org/10.5604/01.3001.0016.2338
  • [3] D. Hrovat, Survey of advanced suspension developments and related optimal control applications, Automatica 33/10 (1997) 1781-1817. DOI: https://doi.org/10.1016/S0005-1098(97)00101-5
  • [4] O. Belghazi, R. Douiri, M. Cherkaoui, Power control of a wind energy based on a DFIG by sliding mode approach and pitch angle optimal control by genetic algorithm, Journal of Achievements in Materials and Manufacturing Engineering 74/2 (2016) 78-85. DOI: https://doi.org/10.5604/17348412.1225913
  • [5] P.-C. Chen, A.-C. Huang, Adaptive sliding control of non-autonomous active suspension systems with time-varying loadings, Journal of Sound and Vibration 282/3-5 (2005) 1119-1135. DOI: https://doi.org/10.1016/j.jsv.2004.03.055
  • [6] F. Zhao, S.S. Ge, F. Tu, Y. Qin, M. Dong, Adaptive neural network control for active suspension system with actuator saturation, IET Control Theory and Applications 10/14 (2016) 1696-1705. DOI: https://doi.org/10.1049/iet-cta.2015.1317
  • [7] B. Mohan, S.B. Phadke, Variable structure active suspension system, Proceedings of the 1996 IEEE 22nd International Conference on Industrial Electronics, Control, and Instrumentation “IECON”, Taipei, Taiwan, 1996, vol. 3, 1945-1948. DOI: https://doi.org/10.1109/IECON.1996.570772
  • [8] V.S. Deshpande, P.D. Shendge, S.B. Phadke, Dual objective active suspension system based on a novel nonlinear disturbance compensator, Vehicle System Dynamics 54/9 (2016) 1269-1290. DOI: https://doi.org/10.1080/00423114.2016.1198490
  • [9] U.S. Pusadkar, S.D. Chaudhari, P.D. Shendge, S.B. Phadke, Linear disturbance observer based sliding mode control for active suspension systems with non-ideal actuator, Journal of Sound and Vibration 442 (2019) 428-444. DOI: https://doi.org/10.1016/j.jsv.2018.11.003
  • [10] C. Hua, J. Chen, Y. Li, L. Li, Adaptive prescribed performance control of half-car active suspension system with unknown dead-zone input, Mechanical Systems and Signal Processing 111 (2018) 135-148. DOI: https://doi.org/10.1016/j.ymssp.2018.03.048
  • [11] S. Brennan, Dead-zone non-linearities and their effect on vehicle lateral dynamics, 1999. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d1bf38e2bdfda18e5c9bef7b50d14cbb47382750
  • [12] X.P. Do, M. Van, Robust control for vibration control systems with dead-zone band and time delay under severe disturbance using adaptive fuzzy neural network, Journal of the Franklin Institute 357/17 (2020) 12281-12307. DOI: https://doi.org/10.1016/j.jfranklin.2020.09.011
  • [13] G. Tao, A. Taware, Control by Compensation of Nonlinearities, in: H. Unbehauen (ed.), Control Systems, Robotics and Automation ‒ Volume III: System Analysis and Control: Classical Approaches ‒III, 2009, EOLSS Publications, Oxford, 165-171.
  • [14] X.-S. Wang, C.-Y. Su, H. Hong, Robust adaptive control of a class of nonlinear systems with unknown dead-zone, Automatica 40/3 (2004) 407-413. DOI: https://doi.org/10.1016/j.automatica.2003.10.021
  • [15] S. Ibrir, W.F. Xie, C.Y. Su, Adaptive tracking of nonlinear systems with non-symmetric dead-zone input, Automatica 43/3 (2007) 522-530. DOI: https://doi.org/10.1016/j.automatica.2006.09.022
  • [16] W.M. Bessa, M.S. Dutra, E. Kreuzer, An adaptive fuzzy dead-zone compensation scheme for nonlinear systems, arXiv preprint (2022). DOI: https://doi.org/10.48550/arXiv.2206.00276
  • [17] K. Ogata, Modern control engineering, Fifth Edition, Prentice Hall, Upper Saddle River, NJ, 2010.
  • [18] H.-S. Ko, J. Jatskevich, G. Dumont, G.-G. Yoon, An advanced LMI-based-LQR design for voltage control of grid-connected wind farm, Electric Power Systems Research 78/4 (2008) 539-546. DOI: https://doi.org/10.1016/j.epsr.2007.04.009
  • [19] M. Armin, P.N. Roy, S.K. Sarkar, S.K. Das, LMI‐based robust PID controller design for voltage control of islanded microgrid, Asian Journal of Control 20/5 (2018) 2014-2025. DOI: https://doi.org/10.1002/asjc.1710
  • [20] P. Xia, H. Shi, H. Wen, Q. Bu, Y. Hu, Y. Yang, Robust LMI-LQR control for dual-active-bridge DC–DC converters with high parameter uncertainties, IEEE Transactions on Transportation Electrification 6/1 (2020) 131-145. DOI: https://doi.org/10.1109/TTE.2020.2975313
  • [21] I.J. Fialho, G.J. Balas, Design of nonlinear controllers for active vehicle suspensions using parameter-varying control synthesis, Vehicle System Dynamics 33/5 (2000) 351-370. DOI: https://doi.org/10.1076/0042-3114(200005)33:5;1-Q;FT351
  • [22] F. Tyan, Y.F. Hong, S.H. Tu, W.S. Jeng, Generation of random road profiles, Journal of Advanced Engineering 4/2 (2009) 151-156.
  • [23] Y. Marjanen, Validation and improvement of the ISO2631-1 (1997) standard method for evaluation discomfort from whole- body vibration in a multi-axis environmental, PhD Thesis, Loughborough University, Loughborough, 2010.
  • [24] K. Wu, C. Ren, Y. Chen, Time-delay vibration reduction control of 3-DOF vehicle model with vehicle seat, Applied Sciences 11/20 (2021) 9426. DOI: https://doi.org/10.3390/app11209426
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f71273c0-6bb9-4a84-bf92-19e79e67069d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.