Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A size-dependent Euler–Bernoulli beam model is derived within the framework of the higher-order nonlocal strain gradient theory. Nonlocal equations of motion are derived by applying Hamilton’s principle and solved with an analytical solution. The solution is obtained using the Navier solution procedure. In the case of simply supported boundary conditions, the analytical solutions of natural frequencies and critical buckling temperature for free vibration problems are obtained. The paper investigates the thermal effects on buckling and free vibrational characteristics of functionally graded size-dependent nanobeams subjected to various types of thermal loading. The influence of higher-order and lower-order nonlocal parameters and strain gradient scale on buckling and vibration are investigated for various thermal conditions. The obtained results are compared with previous research.
Czasopismo
Rocznik
Tom
Strony
139--168
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
autor
- University of Niš, Faculty of Mechanical Engineering, Medvedeva 14, 18000 Niš, Serbia
autor
- University of Niš, Faculty of Mechanical Engineering, Medvedeva 14, 18000 Niš, Serbia
autor
- University of Niš, Faculty of Mechanical Engineering, Medvedeva 14, 18000 Niš, Serbia
Bibliografia
- 1. M. Neek-Amal, F.M.Peters, Graphene nanoribbons subjected to axial-stress, Physical Review B: Condensed Matter and Materials Physics, 82, 085432, 2010.
- 2. H.A. Mansoor, M.H. James, Suction energy for double-stranded DNA inside singlewalled carbon nanotubes, Quarterly Journal of Mechanics and Applied Mathematics, 70, 387–400, 2017.
- 3. A.C. Eringen, On differential equations on nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, 54, 4703–4710, 1983.
- 4. A.C. Eringen, Nonlocal Continuous Field Theories, Springer Science & Business Media, Berlin, 2002.
- 5. E.C. Aifantis, On the role of gradients in the localization of deformation and fracture, International Journal of Engineering Science, 30, 1279–1299, 1992.
- 6. R.D. Mindlin, Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis, 16, 51–78, 1964.
- 7. C.W. Lim, G.Zhang, J.N. Reddy, A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation, Journal of the Mechanics and Physics of Solids, 78, 298–313, 2015.
- 8. F. Ebrahimi, E. Salari, Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment, Acta Astronautica, 113, 29–50, 2015.
- 9. F. Ebrahimi, M.R. Barati, Thermal buckling analysis of size-dependent FG nanobeams based on the third-order shear deformation beam theory, Acta Mechanica Solida Sinica, 29, 183–196, 2016.
- 10. F. Ebrahimi, E. Salari, Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments, Composite Structures, 128, 363–380, 2015.
- 11. E. Taati, On buckling and post-buckling behavior of functionally graded micro-beams in thermal environment, International Journal of Engineering Science, 128, 63–78, 2018.
- 12. F. Ebrahimi, F. Ghasemi, E. Salari, Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities, Meccanica, 51, 223–249, 2016.
- 13. F. Ebrahimi, M.R. Barati, A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures, International Journal of Engineering Science, 107, 183–196, 2016.
- 14. L. Li, X. Li, Y. Hu, Free vibration analysis of nonlocal strain gradient beams made of functionally graded material, International Journal of Engineering Science, 102, 77–92, 2016.
- 15. H.B. Khaniki, Sh. Hosseini-Hashemi, Dynamic transverse vibration characteristics of nonuniform nonlocal strain gradient beams using the generalized differential quadrature method, European Physical Journal Plus, 132, 500, 2017.
- 16. M.H. Jalaei, A. Ghorbanpour Arani, H. Nguyen-Xuan, Investigation of thermal and magnetic field effects on the dynamic instability of FG Timoshenko nanobeam employing nonlocal strain gradient theory, International Journal of Mechanical Sciences, 105043, 161–162, 2019.
- 17. L. Lu, X. Guo, J. Zhao, Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory, International Journal of Engineering Science, 116, 12–24, 2017.
- 18. M.R. Barati, A. Zenkour, A general bi-Helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate, Composite Structures, 168, 885–892, 2017.
- 19. M. Al-Shujairi, Çağri Mollamahmutoğlu, Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect, Composites Part B, 154, 292–312, 2018.
- 20. M. Čanadija, R. Barretta, F. Marotti de Sciarra, A gradient elasticity model of Bernoulli-Euler in non-isotermal environments, European Journal of Mechanics A/Solids, 53, 243–255, 2016.
- 21. A. Apuzzo, R. Barretta, S.A. Faghidian, R. Luciano. F. Marotti de Sciarra, Nonlocal strain gradient exact solutions for functionally graded inflected nano-beams, Composite Part B, 164, 667–674, 2019.
- 22. R. Barretta, M. Čnadija, R. Luciano, F. Marotti de Sciarra, Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams, International Journal of Engineering Science, 136, 53–67, 2018.
- 23. I. Pavlović, R. Pavlović, G. Janevski, Dynamic stability and instability of nanobeams based on the higher-order nonlocal strain gradient theory, Quarterly Journal of Mechanics and Applied Mathematics, 72, 157–178, 2019.
- 24. I. Pavlović, R. Pavlović, G. Janevski, Mathematical modeling and stochastic stability analysis of viscoelastic nanobeams using higher-order nonlocal strain gradient theory, Archives of Mechanics, 71, 137–153, 2019.
- 25. M. Şimşek, H. H. Yurtcu, Analytical solutions for bending and buckling of functionally graded nanobeams based on nonlocal Timoshenko beam theory, Composite Structures, 97, 378–386, 2013.
- 26. T.S. Touloukian, (ed.), Thermophysical Properties of High Temperature Solid Materials, Vol. 1, Elements, Macmillan, New York, 1967.
- 27. G. Romano, R. Barretta, M. Diaco, F. Marotti de Sciarra, Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams, International Journal of Mechanical Science, 121, 151–156, 2017.
- 28. R. Barretta, F. Marotti de Sciarra, Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams, International Journal of Engineering Science, 130, 187–198, 2018.
- 29. Y. Fu, J. Wang, Y. Mao, Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric, functionally graded beams in thermal environment, Applied Mathematical Modelling, 36, 4324–4340, 2012.
- 30. F. Ebrahimi, E. Salari, Thermo-mechanical vibration analysis of nonlocal temperature dependent FG nanobeams with various boundary conditions, Composite Part B, 78, 272–290, 2015.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7120ca4-c923-435d-b66a-20f3ff218657