Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The explosive rise of wireless services necessitates a network connection with high bandwidth, high performance, low mistakes, and adequate channel capacity. Individual mobile users, as well as residential and business clusters are increasingly using the internet and multimedia services, resulting in massive increases in the internet traffic demand. Over the past decade, internet traffic has grown significantly faster than Moore’s law predicted. The current system is facing significant radio frequency spectrum congestion and is unable to successfully transmit growing amounts of (available) data to end users while keeping acceptable delay values in mind. Free space optics is a viable alternative to the current radio frequency technology. This technology has a few advantages, including fast data speeds, unrestricted bandwidth, and excellent security. Since free space optics is invisible to traffic type and data protocol, it may be quickly reliably and profitably integrated into an existing access network. Despite the undeniable benefits of free space optics technology under excellent channel conditions and its wide range of applications, its broad use is hampered by its low link dependability, especially over long distances, caused by atmospheric turbulenceinduced decay and weather sensitivity. The best plausible solution is to establish a secondary channel link in the GHz frequency range that works in tandem with the primary free space optics link. A hybrid system that combines free space optics and millimeter wave technologies in this research is presented. The combined system offers a definitive backhaul maintenance, by drastically improving the link range and service availability.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e141950
Opis fizyczny
Bibliogr. 35 poz., rys., wykr., tab.
Twórcy
autor
- Department of Electronics and Communication, Anna University, Guindy, Chennai 600025, India
autor
- Department of Electronics and Communication, Anna University, Guindy, Chennai 600025, India
Bibliografia
- [1] Chowdhury, M. Z., Hasan, M. K., Shahjalal, M., Hossan, M. T. & Jang, Y. M. Optical wireless hybrid networks: trends, opportunities, challenges, and research directions. IEEE Commun. Surv. Tutor. 22, 930-966 (2020). https://doi.org10.1109/COMST.2020.2966855
- [2] Liu, G. & Jian, D. 5G : Vision an requirements for mobile communication system towards year 2020. Chinese J. Eng. 2016, 1-8 (2016). https://doi.org/10.1155/2016/5974586
- [3] Ford, R. et al. Achieving ultra-low latency in 5G millimeter wave cellular networks. IEEE Commun. Mag. 55, 196-203 (2017). https://doi.org/10.1109/MCOM.2017.1600407CM
- [4] Tunc, C., Ozkoc, M. F., Fund, F. & Panwar, S. S. The blind side: latency challenges in millimeter wave networks for connected vehicle applications. IEEE Trans. Veh. Technol. 70, 529-542 (2021). https://doi.org/10.1109/TVT.2020.3046501
- [5] Mikolajczyk, J. et al. Optical wireless communications operated at long-wave infrared radiation. Int. J. Electron. Telecommun. 66, 383-387 (2020). https://doi.org/10.24425/ijet.2020.131889
- [6] Mikołajczyk, J. et al. Analysis of free-space optics development. Metrol. Meas. Syst. 24, 653-674 (2017). https://doi.org/10.1515/mms-2017-0060
- [7] Son, I. K. & Mao, S. A survey of free space optical networks ☆. Digit. Commun. Netw. 3, 67-77 (2017). https://doi.org/10.1016/j.dcan.2016.11.002
- [8] Khalighi, M. A. & Uysal, M. Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16, 2231-2258 (2014). https://doi.org/10.1109/COMST.2014.2329501
- [9] Rockwell, D. A. & Mecherle, G. S. Wavelength selection for optical wireless communications systems. Proc. SPIE 4530, 26–35 (2001). https://doi.org/10.1117/12.449812
- [10] Bloom, S., Korevaar, E., Schuster, J. & Willebrand, H. Under-standing the performance of free-space optics. J. Opt. Netw. 2, 178-200 (2003). https://doi.org/10.1364/JON.2.000178
- [11] Willebrand, H. & Ghuman, B. S. Free Space Optics : Enabling Optical Connectivity In Today’s Networks. (Indianapolis, Indiana: SAMS, 2002).
- [12] Jeyaseelan, J., Sriram Kumar, D. & Caroline, B. E. Disaster management using free space optical communication system. Photonic Netw. Commun. 39, 1-14 (2020). https://doi.org/10.1007/s11107-019-00865-9
- [13] Anandkumar, D. & Sangeetha, R. G. A survey on performance enhancement in free space optical communication system through channel models and modulation techniques. Opt. Quantum Electron. 53, 5 (2020). https://doi.org/10.1007/s11082-020-02629-6
- [14] Siegel, T. & Chen, S.-P. Investigations of free space optical communications under real-world atmospheric conditions. Wirel. Pers. Commun. 116, 475-490 (2021). https://doi.org/10.1007/s11277-020-07724-1
- [15] Kaur, S. Analysis of inter-satellite free-space optical link perfor-mance considering different system parameters. Opto-Electron. Rev. 27, 10-13 (2019). https://doi.org/10.1016/j.opelre.2018.11.002
- [16] Shah, D., Joshi, H. & Kothari, D. Comparative BER analysis of free space optical system using wavelength diversity over exponentiated weibull channel. Int. J. Electron. Telecommun. 67, 665-672 (2021). https://doi.org/10.24425/ijet.2021.137860
- [17] Ghassemlooy, Z. & Popoola, W. O. Terrestrial Free-Space Optical Communications. in Mobile and Wireless Communications (eds. Fares, S. A. & Adachi, F.) 355-392 (IntechOpen, 2010). https://doi.org/10.5772/7698
- [18] Ricklin, J. C., Hammel, S. M., Eaton, F. D. & Lachinova, S. L. Atmospheric Channel Effects on Free-Space Laser Communication. in Optical and Fiber Communication Reports: Free-Space Laser Communications (eds. Majumdar, A. K. & Ricklin, J. C.) 9–56 (Springer, 2006). https://doi.org/10.1007/978-0-387-28677-8_2
- [19] Ghassemlooy, Z., Popoola, W. & Rajbhandari, S. Optical Wireless Communications: System and Channel Modelling with Matlab®. (CRC press, 2019).
- [20] Kim, I. I., McArthur, B. & Korevaar, E. J. Comparison of Laser Beam Propagation at 785 Nm And 1550 Nm In Fog And Haze For Optical Wireless Communications. in Optical Wireless Communications, Proc. SPIE 4214, 26-37 (2001). https://doi.org/10.1117/12.417512
- [21] Al Naboulsi, M. C. Sizun, H. & de Fornel, F. Fog attenuation prediction for optical and infrared waves. Opt. Eng. 43, 319–329 (2004). https://doi.org/10.1117/1.1637611
- [22] Brown, R. G. W. Optical channels. Fibres, clouds, water and the atmosphere. J. Mod. Opt. 36, 552 (1989). https://doi.org/10.1080/09500348914550651
- [23] Sree Madhuri, A., Immadi, G. & Venkata Narayana, M. Estimation of effect of fog on terrestrial free space optical communication link. Wirel. Pers. Commun. 112, 1229-1241 (2020). https:/doi.org/10.1007/s11277-020-07098-4
- [24] Friedlander, S. K. & Topper, L. Turbulence: Classic Papers on Statistical Theory. (Interscience Publishers, 1961).
- [25] Kolmogorov, A. N. The local structure of turbulence in incom-pressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. A 434, 9-13 (1991). https://doi.org/10.1098/rspa.1991.0075
- [26] Zhu, X. & Kahn, J. M. Free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. 50, 1293-1300 (2002). https://doi.org/10.1109/TCOMM.2002.800829
- [27] Dat, P. T. et al. A Study on Transmission of RF Signals over a Turbulent Free Space Optical Link. in 2008 IEEE Int. Topical Meeting on Microwave Photonics jointly held with 2008 Asia-Pacific Microwave Photonics Conf. 173–176 (2008) https://doi.org/10.1109/MWP.2008.4666664
- [28] Makarov, D. S., Tretyakov, M. Y. & Rosenkranz, P. W. Revision of the 60-GHz atmospheric oxygen absorption band models for practical use. J. Quant. Spectrosc. Radiat. Transf. 243, 106798 (2020). https://doi.org/10.1016/j.jqsrt.2019.106798
- [29] He, Q., Li, J., Wang, Z. & Zhang, L. Comparative study of the 60 GHz and 118 GHz oxygen absorption bands for sounding sea surface barometric pressure. Remote Sens. 14, 2260 (2022). https://doi.org/10.3390/rs14092260
- [30] Arvas, M. & Alsunaidi, M. Analysis of Oxygen Absorption at 60 GHz Frequency Band. in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting Proc. 2127–2128 (2019) https://doi.org/10.1109/APUSNCURSINRSM.2019.8888884
- [31] ITU-R Recomendation. Attenuation Due to Clouds and Fog https://www.itu.int/rec/R-REC-P.840-3-199910-S/en (1999).
- [32] Crane, R. K. A Two-Component Rain Model For the Prediction of Attenuation and Diversity Improvement https://ntrs.nasa.gov/api/ citations/19820025716/downloads/19820025716.pdf (1982).
- [33] ITU-R Recomendation. Recommendation Itu-R P.838-1 Specific Attenuation Model for Rain for Use in Prediction Methods https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.838-1-199910-S!!PDF-E.pdf (1999).
- [34] Amarasinghe, Y., Zhang, W., Zhang, R., Mittleman, D. M. & Ma, J. Scattering of terahertz waves by snow. J. Infrared Millim. Terahertz Waves 41, 215–224 (2020). https://doi.org/10.1007/s10762-019-00647-4
- [35] Davis, C. C., Smolyaninov, I. I. & Milner, S. D. Flexible optical wireless links and networks. IEEE Commun. Mag. 41, 51–57 (2003). https://doi.org/10.1109/MCOM.2003.1186545
Uwagi
This project was conceived by all authors. Research concept and design, data analysis and interpretation, writing the article and final approval of the article were done by I. Lakshmi Priya. All the simulations were carried out by Isanaka Lakshmi Priya. M. Meenakshi was involved in data analysis and interpretation, writing the article, final approval of the content and constructive modification of the article. All authors read and approved the final manuscript.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f70be919-87b2-41da-b8a5-d96037cd310e