PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of State Variables in Textile Composite with Membrane During Complex Heat and Moisture Transport

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The cotton-based composite is equipped with a single/double semipermeable membrane made of polyurethane (PU) (100%), which blocks liquid transport to the surrounding environment. The complex problem analyzed involves the coupled transport of water vapor within the textile material, transport of liquid water in capillaries, as well as heat transport with vapor and liquid water. The problem can be described using the mass transport equation for water vapor, heat transport equation, and mass transport equation for liquid moisture, accompanied by the set of corresponding boundary and initial conditions. State variables are determined using a complex multistage solution procedure within the selected points for each layer. The distributions of state variables are determined for different configurations of membranes.
Rocznik
Strony
328--334
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • Department of Mechanical Engineering, Informatics and Chemistry of Polymer Materials, Faculty of Material Technologies and Textile Design, Lodz University of Technology, Lodz, Poland
Bibliografia
  • [1] Chitrphiromsri, P., Kuznetsov, A. V. (2005). Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure. Heat and Mass Transfer, 41, 206–215.
  • [2] Song, G., Barker, R. L., Hamouda, H., Kuznetsov, A. V., Chitrphiromsri, P., et al. (2004). Modeling the thermal protective performance of heat resistant garments in flash fire exposure, Textile Research Journal, 74(12), 1033–1040.
  • [3] Korycki, R., Szafranska, H. (2013). Modelling of temperature field within textile inlayers of clothing laminates. Fibres and Textiles in Eastern Europe, 21, 4(100), 118–122.
  • [4] Korycki, R. (2007). Shape optimization and shape identification for transient diffusion problems in textile structures. Fibres and Textiles in Eastern Europe, 15, 1(60), 43–49.
  • [5] Li, Y. (2001). The science of clothing comfort, Textile Progress, 15, (1,2).
  • [6] Li, Y., Luo, Z. (1999). An improved mathematical simulation of the coupled diffusion of moisture and heat in wool fabric. Textile Research Journal, 69(10), 760–768.
  • [7] Wang, Z., Li Y., Kowk, Y. L. (2002). Mathematical simulation of the perception of fabric thermal and moisture sensations. Textile Research Journal, 72(4), 327–334.
  • [8] Haghi, A. K. (2003). Factors effecting water-vapor transport through fibers. Theoretical and Applied Mechanics, 30(4), 277–309.
  • [9] Li, Y., Zhu, Q., Yeung, K. W. (2002). Influence of thickness and porosity on coupled heat and liquid moisture transfer in porous textiles. Textile Research Journal, 72(5), 435–446.
  • [10] Li, Y., Zhu, Q. (2003). Simultaneous heat and moisture transfer with moisture sorption, condensation and capillary liquid diffusion in porous textiles. Textile Research Journal, 73(6), 515–524.
  • [11] Li, Y., Zhu, Q. (2004). A model of heat and moisture transfer in porous textiles with phase change materials. Textile Research Journal, 74(5), 447–457.
  • [12] Hes, L., Araujo, M. (2010). Simulation of the effect of air gaps between the skin and a wet fabric on resulting cooling flow. Textile Research Journal, 80(14), 1488–1497.
  • [13] Puszkarz, A. K., Krucińska, I. (2018). Modeling of air permeability of knitted fabric using the computational fluid dynamics. Autex Research Journal, 18(4), 364–376. DOI: 10.1515/aut-2018-0007.
  • [14] Grabowska, K., Ciesielska-Wróbel, K. (2014). Basic Comparison of the Properties of the Loop and Frotte Yarns, Woven and Knitted Fabrics, Autex Research Journal, 14(3), 135–144, ISSN (Online) 2300-0929, DOI: 10.2478/aut-2014-0009.
  • [15] Korycki, R., Krucińska, I. (2016). Numerical optimisation of thickness of composite bonnet for neonates, Autex Research Journal, 16(4), 196–204, ISSN (Online) 2300-0929, DOI: 10.1515/aut-2015-0039.
  • [16] Krucińska, I., Skrzetuska, E., Kowalski, K. (2019). Application of a thermal mannequin to the assessment of the heat insulating power of protective garments for premature babies. Autex Research Journal, 19(2), 134–146. DOI: 10.1515/aut-2018-0010.
  • [17] Dems, K., Korycki, R. (2005). Sensitivity analysis and optimal design for steady conduction problem with radiative heat transfer. Journal of Thermal Stresses, 28, 213–232.
  • [18] Korycki, R. (2009). Method of thickness optimization of textile structures during coupled heat and mass transport. Fibres and Textiles in Eastern Europe, 17, 1(72), 33–38.
  • [19] Korycki, R. (2011). Modelling of transient heat transfer within bounded seams. Fibres and Textiles in Eastern Europe, 19, 5(88), 112–116.
  • [20] Korycki, R., Szafrańska, H. (2016). Optimisation of pad thicknesses in ironing machines during coupled heat and mass transport. Fibres and Textiles in Eastern Europe, 24, 1(115), 128–135.
  • [21] Korycki, R., Więzowska, A. (2011). Modelling of the temperature field within knitted fur fabrics. Fibres and Textiles in Eastern Europe, 19, 1(84), 55–59.
  • [22] Zięba, M., Małysa, A., Wasilewski, T., Ogorzałek, M. (2019). Effects of chemical structure of silicone polyethers used as fabric softener additives on selected utility properties of cotton fabric. Autex Research Journal, 19(1), 1–7.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f708fef5-76a7-4e5e-bc2c-d87b0da02828
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.