Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Brain aneurysms often prove fatal if ruptured, therefore, understanding their mechanical behaviour in the coupled system of vessels and blood flow can significantly help preventive surgical treatment. The purpose of this work was to analyse measurement data and to determine material parameters for the hyperelastic Mooney–Rivlin model for model building and numerical simulations of aneurysms. Methods: A total of 88 human brain aneurysm specimens of 41 patients obtained from surgery were processed in this work based on the tests performed by the authors in a previous project. A novel algorithm was proposed and applied in this work to fit stress–stretch ratio curves for multiple measurement data using constrained optimization with hard conditions to comply with known mechanical behaviour. Results: The method produced parameters of stretch ratio–stress curves for a number of groups of the specimens representing the average as well as the extreme stresses, separately for male and female subsamples. Stretch range both in compression and in tension up to rupture was covered and material stability for the entire range was also verified. Conclusions: The fitted curves with recommended range of validity are directly applicable to numerical finite element or coupled simulations of aneurysms supporting preventive medical treatment or decision making.
Czasopismo
Rocznik
Tom
Strony
95--108
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
- Department of Structural Mechanics, Budapest University of Technology and Economics, Budapest, Hungary.
autor
- Department of Structural Mechanics, Budapest University of Technology and Economics, Budapest, Hungary.
Bibliografia
- [1] BAZARAA M.S., SHERALI H.D., SHETTY C.M., Nonlinear Optimization Theory and Algorithms, John Wiley & Sons, New York, NY, USA, 1993.
- [2] BAZILEVS Y., CALO V.M., ZHANG Y., HUGHES T.J.R., Isogeometric fluid–structure interaction analysis with applications to arterial blood flow, Comput. Mech., 2006, 38, 310–322, DOI: 10.1007/s00466-006-0084-3. Fig. 7. Comparison of constrained solution and unconstrained least square solution for the entire domain in the male sample: constrained solution (solid thick line) as in Fig. 4(a); unconstrained solution (dashed line) contradicts expected mechanically correct shape in terms of alternating sections, stability, and adequacy even in the initial range
- [3] BENRA F.-K., DOHMEN H.J., PEI J., SCHUSTER S., WAN B., A Comparison of One-Way and Two-Way Coupling Methods for Numerical Analysis of Fluid-Structure Interactions, J. Appl. Math., 2011, Article ID 853560, 16 pp., DOI: 10.1155/2011/853560.
- [4] CHUONG C.J., FUNG Y.C., Three-dimensional stress distribution in arteries, J. Biomech. Eng., 1983, 105 (3), 268–274. DOI: 10.1115/1.3138417.
- [5] COSENTINO F., AGNESE V., RAFFA G.M., GENTILE G., BELLAVIA D., ZINGALES M., PILATO M., PASTA S., The role of material properties in ascending thoracic aortic aneurysms, Comput. Biol. Med., 2019, 109, 70–78, DOI: 10.1016/j.compbiomed.2019.04.022.
- [6] DELFINO A., Analysis of stress field in a model of the human carotid bifurcation, Swiss Federal Institute of Technology Lausanne, 1996, DOI: 10.5075/epfl-thesis-1599.
- [7] DELFINO A., STERGIOPULOS N., MOORE J.E., MEISTER J.J., Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation, J. Biomech., 1997, 30, 777–786, DOI: 10.1016/S0021-9290(97)00025-0.
- [8] FUNG Y.C., Biomechanics: Mechanical Properties of Living Tissues, Springer-Verlag, New York 1993.
- [9] FUNG Y.C., FRONEK K., PATITUCCI P., Pseudoelasticity of arteries and the choice of its mathematical expression, Am. J. Physiol. – Heart C., 1979, 237, H620–H631. DOI: 10.1152/ajpheart.1979.237.5.H620.
- [10] HOLZAPFEL G.A., Determination of material models for arterial walls from uniaxial extension tests and histological structure, J. Theor. Biol., 2006, 238, 290–302. DOI: 10.1016/j.jtbi.2005.05.006.
- [11] HOLZAPFEL G.A., GASSER T.C., OGDEN R.W., A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elasticity, 2000, 61, 1–48, DOI: 10.1023/A:1010835316564.
- [12] HOLZAPFEL G.A., OGDEN R.W., Constitutive modelling of arteries, P. Roy. Soc. A – Math. Phy., 2010, 466, 1551–1597, DOI: 10.1098/rspa.2010.0058.
- [13] HOLZAPFEL G.A., SOMMER G., GASSER C.T., REGITNIG P., Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling, Am. J. Physiol. – Heart C., 2005, 289, H2048–H2058. DOI: 10.1152/ajpheart.00934.2004.
- [14] HOLZAPFEL G.A., WEIZSÄCKER H.W., Biomechanical behawior of the arterial wall and its numerical characterization, Comput. Biol. Med., 1998, 28, 377–392. DOI: 10.1016/S0010-4825(98)00022-5.
- [15] HORVATH T., OSZTOVITS J., PINTÉR A. et al., Genetic impact dominates over environmental effects in development of carotid artery stiffness: a twin study, Hypertens. Res., 2014, 37, 88–93. DOI:10.1038/hr.2013.133.
- [16] HORVATH T., PINTER A., KOLLAI M., Carotid artery stiffness is not related to endothelial function in young healthy subjects, Auton. Neurosci., 2012, 166, 85–88, DOI: 10.1016/j.autneu.2011.09.004.
- [17] HOU G., WANG J., LAYTON A., Numerical Methods for Fluid – Structure Interaction – A Review, Commun. Comput. Phys., 2012, 12, 2, 337–377, DOI: 10.4208/cicp.291210.290411s.
- [18] HUDETZ A.G., MONOS E., A viscoelastic model of mechanically induced and spontaneous contractions of vascular smooth muscle. Acta Physiol. Hung., 1985, 65, 109–123, pmid:3984755.
- [19] KARUSH W., Minima of functions of several variables with inequalities as side conditions, M.Sc. dissertation, Department of Mathematics, University of Chicago, 1939.
- [20] KOBIELARZ M., JANKOWSKI L.J., Experimental characterization of the mechanical properties of the abdominal aortic aneurysm wall under uniaxial tension, J. Theor. App. Mech.–Pol., 2013, 51 (4), 949–958.
- [21] KUHN H.W., TUCKER A.W., Nonlinear programming, [in:] J. Neyman (Ed.), Proceedings of Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 1951, 481–492.
- [22] LÁSZLÓ A., PINTÉR A., HORVÁTH T. et al., Impaired carotid artery elastic function in patients with tetralogy of Fallot, Heart Vessels, 2011, 26, 542–548, DOI: 10.1007/s00380-010-0095-z.
- [23] LAURENCE D.W., HOMBURG H., YAN F. et al., A pilot study on biaxial mechanical, collagen microstructural, and morphological characterizations of a resected human intracranial aneurysm tissue, Sci. Rep.-UK, 2021, 11, 3525, DOI: 10.1038/s41598-021-82991-x.
- [24] MING-CHEN H., KAMENSKY D., BAZILEVS Y., SACKS M.S., HUGHES T.J.R., Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation, Comput. Mech., 2014, 54, 1055–1071. DOI: 10.1007/s00466-014-1059-4.
- [25] MONOS E., A nagy artériák biomechanikai tulajdonságai. Génsebészet, biomechanika, ökológia. (9) A biológia aktuális problémái (Biomechanical properties of large arteries. Genetic surgery, biomechanics, ecology. (9) Actual problems in biology), Medicina Könyvkiadó, Budapest 1977 (in Hungarian).
- [26] MONOS E., SZŰCS B., Optimization of hemodynamic Energy expenditure in the arterial system, Obes. Res., 1995, 3, 811S–818S, DOI: 10.1002/j.1550-8528.1995.tb00504.x (Invited review).
- [27] MOONEY M., A theory of large elastic deformation, J. Appl. Phys., 1940, 11, 582–592, DOI: 10.1063/1.1712836.
- [28] MOREL S., KAROL A., GRAF V. et al., Sex-related differences in wall remodeling and intraluminal thrombus resolution in a rat saccular aneurysm model, J. Neurosurg., 2021, 134, 58–71, DOI: 10.3171/2019.9.JNS191466.
- [29] NOBLE C., CARLSON K.D., NEUMANN E., DRAGOMIR-DAESCU D., ERDEMIR A., LERMAN A., YOUNG M., Patient specific characterization of artery and plaque material properties in peripheral artery disease, J. Mech. Behav. Biomed., 2020, 101, 103453, DOI: 10.1016/j.jmbbm.2019.103453.
- [30] OGDEN R.W., Nearly isochoric elastic deformations: application to rubberlike solids, J. Mech. Phys. Solids, 1978, 26, 37–57.
- [31] OGDEN R.W., SCHULZE-BAUER C.A.J., Phenomenological and structural aspects of the mechanical response of arteries, [in:] J. Casey, G. Bao (Eds.), Mechanics in Biology, The American Society of Mechanical Engineers, 2000, Vol. AMD–Vol. 242/BED–Vol. 46, 125–140,.
- [32] PRENDERGAST P.J., LALLY C., DALY S., REID A.J., LEE T.C., QUINN D., DOLAN F., Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finiteelement modelling, J. Biomech. Eng. – T. ASME, 2003, 125, 692–699, DOI: 10.1115/1.1613674.
- [33] RHODIN J.A.G., Architecture of the vessel wall, [in:] H.V. Sparks, Jr., D.F. Bohr, A.D. Somlyo, S.R. Geiger (Eds.), Handbook of Physiology, The Cardiovascular System, American Physiologial Society, 1980, Vol. 2, 1–31.
- [34] RIVLIN R.S., Large elastic deformations of isotropic materials. IV. Further developments of the general theory, Philos. T. Roy. Soc. A, 1948, 241, 379–397, DOI: 10.1098/rsta.1948.0024.
- [35] SILVER F.H., CHRISTIANSEN D.L., BUNTIN C.M., Mechanical properties of the aorta: a review, Crit. Rev. Biomed. Eng., 1989, 17, 323–358, pmid:2676341.
- [36] SKOWRONEK R., KOBEK M., JANKOWSKI Z. et al., Traumatic basal subarachnoid haemorrhage or ruptured brain aneurysm in 16-year-old boy? – case report. Archiwum Medycyny Sądowej i Kryminologii (Archives of Forensic Medicine and Criminology), 2016, 66 (1), 32–40. DOI: 10.5114/amsik.2016.62333.
- [37] TAKAMIZAWA K., HAYASHI K., Strain energy density function and uniform strain hypothesis for arterial mechanics, J. Biomech., 1987, 20, 7–17, DOI: 10.1016/0021-9290(87)90262-4.
- [38] TANG A.M., BAKHSHESHIAN J., DING L. et al., Nonindex Readmission After Ruptured Brain Aneurysm Treatment Is Associated with Higher Morbidity and Repeat Readmission, World Neurosurg., 2019, 130, e753-e759, DOI: https://doi.org/10.1016/j.wneu.2019.06.214.
- [39] TEZDUYAR T.E., SATHE S., SCHWAAB M., CONKLIN B.S., Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique, Int. J. Numer. Meth. Fluids, 2008, 57, 601–629, DOI: 10.1002/fld.1633.
- [40] TORII R., OSHIMA M., KOBAYASHI T., TAKAGI K., TEZDUYAR T.E., Fluid–structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes, Comput. Methods Appl. Mech. Eng., 2009, 198, 3613–3621, DOI: 10.1016/j.cma.2008.08.020.
- [41] TÓTH B., A vérben áramló vörösvértestek és az érfal mechanikai kölcsönhatása (Analysis of the mechanical interaction between the red blood cells and the blood vessels), PhD dissertation, Budapest University of Technology and Economics, 2011 (in Hungarian).
- [42] TÓTH M., NÁDASY G., NYÁRY I., KERÉNYI T., MONOS E., Agyi aneurizmás betegek intra- és extracranialis artériáinak biomechanikai tulajdonságai (Biomechanical properties of intracranialis and extracranialis arteries of brain aneurysm patients), Érbetegségek, 1996, 3, 1–8 (in Hungarian).
- [43] TÓTH M., NÁDASY G., NYÁRY I., KERÉNYI T., OROSZ M., MOLNÁRKA G., MONOS E., A humán agyi aneurizmazsákok sztérikusan inhomogén viszkoelasztikus viselkedése (Steric inhomogeneous viscoelastic behaviour of brain aneurysms), Érbetegségek, 1997, 4, 1–12 (in Hungarian).
- [44] UPADHYAY K., SUBHASH G., SPEAROT D., Thermodynamicsbased stability criteria for constitutive equations of isotropic hyperelastic solids, J. Mech. Phys. Solids, 2019, 124, 115–142, DOI: 10.1016/j.jmps.2018.09.038.
- [45] VAISHNAV R.N., YOUNG J.T., PATEL D.J., Distribution of stresses and of strain-energy density through the wall thickness in a canine aortic segment, Circ. Res., 1973, 32, 577–583, DOI: 10.1161/01.RES.32.5.577.
- [46] YANG C., BACH R.G., ZHENG J., NAQA I.E., WOODARD P.K., TENG Z., BILLIAR K., TANG D., In vivo IVUS-based 3-D fluid–structure interaction models with cyclic bending and anisotropic vessel properties for human atherosclerotic coronary plaque mechanical analysis, IEEE T. Bio-Med. Eng., 2009, 56, 2420–2428, DOI: 10.1109/TBME.2009.2025658.
- [47] YEOH O.H., Some forms of the strain energy function for rubber, Rubber Chem. Technol., 1993, 66, 754–771. DOI: 10.5254/1.3538343.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f70659eb-17dd-47db-94c4-8fa3f4ce4227