PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spectral properties of certain operators on the free Hilbert space ℑ [H1, . . . , HN] and the semicircular law

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we fix N -many l2-Hilbert spaces Hk whose dimensions are [formula] for k=1,…, N, for N ∈N\{1}. And then, construct a Hilbert space ℑ = ℑ [H1 , . . . , HN] induced by H1 , . . . , HN, and study certain types of operators on ℑ. In particular, we are interested in so-called jump-shift operators. The main results (i) characterize the spectral properties of these operators, and (ii) show how such operators affect the semicircular law induced by [formula], where Bk are the orthonormal bases of Hk , for k = 1, . . . , N.
Rocznik
Strony
755--803
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • St. Ambrose University Department of Mathematics and Statistics 518 W. Locust St., Davenport, Iowa, 52803, U.S.A.
Bibliografia
  • [1] M. Ahsanullah, Some inferences on semicircular distribution, J. Stat. Theory Appl. 15 (2016), no. 3, 207-213.
  • [2] D. Alpay, P. Jorgensen, Spectral theory for Gaussian processes: reproducing kernels, boundaries, and L2 -wavelet generators with fractional scales, Numer. Funct. Anal. Optim. 36 (2015), no. 10, 1239-1285.
  • [3] D. Alpay, P. Jorgensen, D. Levanony, On the equivalence of probability spaces, J. Theoret. Probab. 30 (2017), no. 3, 813-841.
  • [4] D. Alpay, P. Jorgensen, D. Levanony, A class of Gaussian processes with fractional spectral measures, J. Funct. Anal. 261 (2011), no. 2, 507-541.
  • [5] D. Alpay, P. Jorgensen, G. Salomon, On free stochastic processes and their derivatives, Stochastic Process. Appl. 124 (2014), no. 10, 3392-3411.
  • [6] H. Bercovici, D. Voiculescu, Superconvergence to the central limit and failure of the Cramer theorem for free random variables, Probab. Theory Related Fields 103 (1995), no. 2, 215-222.
  • [7] M. Bozheiko, E.V. Litvinov, I.V. Rodionova, An extended anyon Fock space and non-commutative Meixner-type orthogonal polynomials in the infinite-dimensional case, Uspekhi Mat. Nauk 70 (2015), no. 5, 75-120, translation in Russian Math. Surveys 70 (2015), no. 5, 857-899
  • [8] M. Bożejko, W. Ejsmont, T. Hasebe, Noncommutative probability of type D, Internat. J. Math. 28 (2017), no. 2, 1750010, 30 pp.
  • [9] I. Cho, Banach *-algebras generated by semicircular elements induced by certain orthog¬onal projections, Opuscula Math. 38 (2018), no. 4, 501-535.
  • [10] I. Cho, Semicircular-like laws and the semicircular law induced by orthogonal projections, Complex Anal. Oper. Theory 12 (2018), no. 7, 1657-1695.
  • [11] I. Cho, Certain Banach-space operators acting on the semicircular elements induced by orthogonal projections, Mathematical Modelling, Applied Analysis and Computation, 1-39, Springer Proc. Math. Stat., 272, Springer, Singapore, 2019.
  • [12] I. Cho, J. Dong, Catalan numbers and free distributions of mutual ly free multisemicircular elements, (2018), submitted.
  • [13] I. Cho, P.E.T. Jorgensen, Semicircular Elements Induced by Projections on Separable Hilbert Spaces, Linear Systems, Signal Processing and Hypercomplex Analysis, Oper. Theory Adv. Appl., 275, Linear Oper. Linear Syst., Birkhäuser/Springer, Cham, 2019, 167-209.
  • [14] A. Connes, Noncommutative Geometry, Academic Press, Inc., San Diego, CA, 1994.
  • [15] P.R. Halmos, A Hilbert Space Problem Book, Graduate Texts in Mathematics, 19. Springer-Verlag, New York-Berlin, 1982.
  • [16] I. Nourdin, G. Peccati, R. Speicher, Multi-dimensional semicircular limits on the free Wigner chaos, Stochastic Analysis, Random Fields and Applications VII, 211-221, Progr. Probab., 67, Birkhäuser/Springer, Basel, 2013.
  • [17] V. Pata, The central limit theorem for free additive convolution, J. Funct. Anal. 140 (1996), no. 2, 359-380.
  • [18] F. Radulescu, Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group of noninteger index, Invent. Math. 115 (1994), no. 2, 347-389.
  • [19] P. Shor, Quantum Information Theory: Results and Open Problems, Geom. Funct. Anal (GAFA), Special Volume: GAFA2000, (2000), 816-838.
  • [20] R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Mem. Amer. Math. Soc. 132 (1998), no. 627.
  • [21] R. Speicher, Free Probability and Random Matrices, Proceedings of the International Congress of Mathematicians, Seoul 2014, vol. III, Published by Kyung Moon Sa (2014), 477-501.
  • [22] D. Voiculescu, Free probability for pairs of faces I, Comm. Math. Phys. 332 (2014), no. 3, 955-980.
  • [23] D. Voiculescu, K. Dykema, A. Nica, Free Random Variables, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992.
  • [24] Y. Yin, Z. Bai, J. Hu, On the semicircular law of large-dimensional random quaternion matrices, J. Theoret. Probab. 29 (2016), no. 3, 1100-1120.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7061df6-1b3e-4276-bce1-788b0a8d8a82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.