PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability characteristics of single-walled boron nitride nanotubes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Boron nitride nanotubes, like carbon nanotubes, possess extraordinary mechanical properties. Herein, a three-dimensional finite element model is proposed in which the nanotubes are modeled using the principles of structural mechanics. To obtain the properties of this model, a linkage between the molecular mechanics and the density functional theory is constructed. The model is utilized to study the buckling behavior of single-walled boron nitride nanotubes with different geometries and boundary conditions. It is shown that at the same radius, longer nanotubes are less stable. However, for sufficiently long nanotubes the effect of side length decreases.
Rocznik
Strony
162--170
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
autor
  • Young Researchers Club, Langroud Branch, Islamic Azad University, Langroud, Guilan, Iran
autor
  • Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
autor
  • Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran
Bibliografia
  • [1] S. Iijima, Helical microtubules of graphite carbon, Nature 354 (1991) 56–58.
  • [2] J.P. Salvetat, J.M. Bonard, N.M. Thomson, A.J. Kulik, L. Forro', W. Benoit, L. Zuppiroli, Mechanical properties of carbon nanotubes, Applied Physics A: Material Science Processing 68 (1999) 287–292.
  • [3] E. Hernández, C. Goze, P. Bernier, A. Rubio, Elastic properties of single-wall nanotubes, Applied Physics A 68 (1999) 287–292.
  • [4] P. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, R.E. Walkup, Carbon nanotubes: nanomechanics, manipulation and electronic devices, Applied Surface Science 141 (1999) 201–209.
  • [5] A. Rubio, J.L. Corkill, M.L. Cohen, Theory of graphitic boron nitride nanotubes, Physical Review B 49 (1994) 5081–5084.
  • [6] X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Stability and band gap constancy of boron nitride nanotubes, European Physics Letters 28 (1994) 335–340.
  • [7] E. Hernández, C. Goze, P. Bernier, A. Rubio, Elastic properties of C and BxXyNz composite nanotubes, Physical Review Letters 80 (1998) 4502–4505.
  • [8] N.G. Chopra, A. Zettl, Measurement of the elastic modulus of a multi-wall boron nitride nanotube, Solid State Communications 105 (1998) 297–300.
  • [9] C.W. Chang, W.Q. Han, A. Zettl, Thermal conductivity of B–C–N and BN nanotubes, Applied Physics Letters 86 (2005) 173102.
  • [10] Y. Chen, J. Zou, S.J. Campbell, G.L. Caer, Boron nitride nanotubes: pronounced resistance to oxidation, Applied Physics Letters 84 (2004) 2430–2432.
  • [11] X. Bai, D. Golberg, Y. Bando, C. Zhi, C. Tang, M. Mitome, K. Kurashima, Deformation-driven electrical transport of individual boron nitride nanotubes, Nano Letters 7 (2007) 632–637.
  • [12] A.P. Suryavanshi, M. Yu, J. Wen, C. Tang, Y. Bando, Elastic modulus and resonance behavior of boron nitride nanotubes, Applied Physics Letters 84 (2004) 2527–2529.
  • [13] V. Verma, V.K. Jindal, K. Dharamvir, Elastic moduli of a boron nitride nanotube, Nanotechnology 18 (2007) 435711.
  • [14] S. Iijima, C. Brabec, A. Maiti, J. Bernholc, Structural flexibility of carbon nanotubes, Journal of Chemical Physics 104 (1996) 2089–2092.
  • [15] B.I. Yakobson, M.P. Campbell, C.J. Brabec, J. Bernholc, High strain rate fracture and C-chain unraveling in carbon nanotubes, Computational Materials Science 8 (1997) 341–348.
  • [16] D. Sanchez-Portal, E. Artacho, J.M. Soler, A. Rubio, P. Ordejon, Ab initio structural, elastic, and vibrational properties of carbon nanotubes, Physical Review B 59 (1999) 12678–12688.
  • [17] C. Li, T.W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, International Journal of Solids and Structures 40 (2003) 2487–2499.
  • [18] R. Ansari, S. Rouhi, Atomistic finite element model for axial buckling of single-walled carbon nanotubes, Physica E 43 (2010) 58–69.
  • [19] S. Rouhi, R. Ansari, Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets, Physica E 44 (2012) 764–772.
  • [20] J. Song, J. Wu, Y. Huang, K.C. Hwang, Continuum modeling of boron nitride nanotubes, Nanotechnology 19 (2008) 445705.
  • [21] R. Chowdhury, C.Y. Wang, S. Adhikari, F. Scarpa, Vibration and symmetry-breaking of boron nitride nanotubes, Nanotechnology 21 (2010) 365702 (9pp.).
  • [22] N.L. Allinger, Conformational analysis 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms, Journal of American Chemical Society 99 (1977) 8127–8134.
  • [23] U. Burkert, N.L. Allinger, Molecular Mechanics. ACS Monograph 177, American Chemical Society, Washington, DC, 1982.
  • [24] S.C. Fang, W.J. Chang, Y.H. Wang, Computation of chirality-and size-dependent surface Young's moduli for single-walled carbon nanotubes, Physics Letters A 371 (2007) 499–503.
  • [25] X. Zhou, J. Zhou, Z.C. Ou-Yang, Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory, Physical Review B 62 (2000) 13692–13696.
  • [26] Z.C. Tu, Z.C. Ou-Yang, Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number, Physical Review B 65 (2002) 233407.
  • [27] A. Szabo, N.S. Ostlund, Modern Quantum Chemistry, McGraw-Hill, New York, 1989.
  • [28] L. Hedin, New method for calculating the one-particle Green's function with application to the electron-gas problem, Physical Review A 139 (1965) 796–823.
  • [29] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical Review Letters 77 (1996) 3865–3868.
  • [30] J.P. Perdew, K. Burke, Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many- electron system, Physical Review B 54 (1996) 16533–16539.
  • [31] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin- Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials, Journal of Physics: Condensed Matter 21 (2009) 395502.
  • [32] M. Mirnezhad, R. Ansari, H. Rouhi, Effects of hydrogen adsorption on mechanical properties of chiral single-walled zinc oxide nanotubes, Journal of Applied Physics 111 (2012) 014308.
  • [33] K. Zhao, M. Zhao, Z. Wang, Y. Fan, Tight-binding model for the electronic structures of SiC and BN nanoribbons, Physical Review E 43 (2010) 440–445.
  • [34] G. Grosso, G.P. Parravicini, Solid State Physics, Academic Press, Waltham, 2000.
  • [35] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Physical Review B 136 (1964) 864–871.
  • [36] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review A 140 (1965) 1133–1138.
  • [37] P.M. Gill, B.G. Johnson, J.A. Pople, M.J. Frisch, An investigation of the performance of a hybrid of Hartree–Fock and density functional theory, International Journal of Quantum Chemistry 44 (1992) 319–331.
  • [38] I.C. Gerber, J.G. Ángyán, M. Marsman, G. Kresse, Range separated hybrid density functional with long-range Hartree–Fock exchange applied to solids, Journal of Chemical Physics 127 (2007) 054101.
  • [39] M. Schluter, D.R. Hamann, C. Chiang, Norm-conserving pseudopotentials, Physics Review Letters 43 (1979) 1494–1497.
  • [40] N. Troullier, J.L. Martins, Efficient pseudopotentials for planewave calculations, Physica Review B 43 (1991) 1993–2006.
  • [41] M. Topsakal, S. Cahangirov, S. Ciraci1, The response of mechanical and electronic properties of graphane to the elastic strain, Applied Physics Letters 96 (2010) 091912.
  • [42] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical Review B 13 (1976) 5188–5192.
  • [43] M. Arroyo, T. Belytschko, Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy–Born rule, Physical Review B 69 (2004) 115415.
  • [44] Q. Lu, M. Arroyo, R. Huang, Elastic bending modulus of monolayer graphene, Journal of Physics D: Applied Physics 42 (2009) 102002.
  • [45] T. Chang, H. Gao, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model, Mechanics and Physics of Solids 51 (2003) 1059– 1074.
  • [46] T. Chang, G. Li, X. Guo, Elastic axial buckling of carbon nanotubes via a molecular mechanics model, Carbon 43 (2005) 287–294.
  • [47] C. Li, T.W. Chou, Modeling of elastic buckling of carbon nanotubes by molecular structural mechanics approach, Mechanics of Materials 36 (2004) 1047–1055.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7058eae-b6b1-4711-b194-c5b29d220d84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.