PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania i modelowanie procesów tribologicznych zachodzących w układzie gniazdo – lekki zawór – prowadnica w rozrządach tłokowych silników spalinowych

Autorzy
Identyfikatory
Warianty tytułu
EN
Researches and modeling of tribological phenomena occurring in the seat insert – lightweight valve – guide system for valvetrains of internal combustion engines
Języki publikacji
PL
Abstrakty
PL
W pracy zaproponowano rozwiązanie problemów tribologicznych w układach z lekkimi zaworami w krzywkowych i bezkrzywkowych rozrządach tłokowych silników spalinowych. Pierwszym problemem jest zużycie przylgni zaworu i gniazda. Drugim są opory ruchu i zużycie trzonka i prowadnicy zaworu. Rozwiązanie tych dwóch problemów osiągnięto poprzez rozpoznanie procesów i zjawisk tribologicznych we wspomnianych węzłach ciernych lekkich zaworów wykonanych ze stopów tytanu i z ceramiki, napędzanych krzywkowo i bez-krzywkowo. Przeprowadzono na drodze eksperymentalnej i teoretycznej analizę istotnych zjawisk zachodzących podczas procesu zużywania przylgni gniazda i lekkiego zaworu oraz procesu tarcia mieszanego i zużycia między trzonkiem lekkiego zaworu i jego prowadnicą, przy zmieniającym się udziale tarcia płynnego. W efekcie tej analizy zaproponowano charakterystykę oporów ruchu i zużywania w ramach jednego modelu, z uwzględnieniem zjawisk sprzężonych. Pozwala ona dobierać wolnozmienne parametry geometryczne i materiałowe oraz szybkozmienne wymuszenia w układzie prowadnica-lekki zawór-gniazdo, w sposób warunkujący racjonalny (z możliwością optymalizacji) przebieg pracy lekkiego zaworu podczas przebiegu międzynaprawczego silnika. Jako kryterium optymalizacji zaproponowano minimalizację sumy przepływów mediów między przylgniami zaworu i gniazda oraz w szczelinie między trzonkiem zaworu i prowadnicą, w obrębie ustalonego cyklu roboczego silnika. W pracy dokonano krytycznej oceny opisanych w literaturze modeli tarcia, na podstawie której wybrano dwa, uwzględniające obecność warstwy ochronnej na powierzchniach zaworu i/lub gniazd i prowadnic. Pierwszy model umożliwia wykonywanie symulacji oporów ruchu między trzonkiem zaworu i prowadnicą w warunkach zbliżonych do rzeczywistości, przy małej angażowanej mocy obliczeniowej. Drugi szybki, oparty na sieciach neuronowych, może być wykorzystywany w algorytmie sterowania napędu zaworu, głównie do kompensacji tarcia. Opracowano modułowy model zużywania zaworu, gniazda i prowadnicy uwzględniający istnienie warstwy ochronnej na powierzchniach zaworu i/lub gniazd i prowadnic. Umożliwia on wykonywanie symulacji procesu zużywania w warunkach zbliżonych do rzeczywistości, przy małej angażowanej mocy obliczeniowej. Opracowano sieci jednoznacznych powiązań między modelem oporów ruchu i modelem zużywania elementów układu gniazdo-zawór-prowadnica. Wyznaczono dopuszczalne prędkości osiadania zaworu w jego gnieździe ze względu na zużycie i hałaśliwość pracy. Dobrano racjonalne materiały trzonka i prowadnicy ze względu na ich zużycie przy założeniu ograniczonego smarowania. W pierwszej części pracy wskazano konsekwencje, jakie powstaną w różnych silnikach spalinowych w wyniku zastąpienia klasycznych, pełnych zaworów stalowych przez zawory z lekkich materiałów. W drugiej części pracy podano cel, zakres i tezę pracy. W kolejnej części omówiono układ prowadnica-zawór-gniazdo jako system tribologiczny. Potraktowano go jako obiekt analizy, omówiono elementy składowe, wymuszenia i zachodzące między nimi relacje. Podano zależności matematyczne opisujące te relacje. W kolejnej części pracy omówiono stosowane materiały, powierzchnie ochronne i parametry geometryczne lekkich zaworów oraz współpracujących z nimi prowadnic i gniazd. W następnej części pracy przeprowadzono dyskusję istniejących modeli tarcia, efektem której był wybór jednego z nich do symulacji oporów ruchu trzonka lekkiego zaworu względem prowadnicy, drugiego zaś do kompensacji tarcia w algorytmie sterowania bezkrzywkowego napędu zaworu. W modelach tarcia uwzględniono istnienie warstwy ochronnej na powierzchni zaworu, prowadnicy i gniazda. Podano przykładowe obliczenia oporów ruchu. Omówiono stosowane metody kompensacji tarcia w algorytmach sterowania urządzeń mechatronicznych, do których należy bezkrzywkowy napęd zaworu. Przedstawiono model fizyczny i matematyczny tarcia między trzonkiem lekkiego zaworu i prowadnicą. W kolejnej części pracy omówiono proces zużywania par ciernych systemu HSZG-TSZP ( grzybek zaworu-Smar-Zanieczyszczenie-Gniazdo-Trzonek zaworu-Smar-Zanieczyszczenie-Prowadnica). Omówiono rodzaje zużycia i parametry na nie wpływające. Przeprowadzono dyskusję istniejących modeli zużywania zaworu, prowadnicy i gniazda i w wyniku opracowano własne fizyczne i matematyczne modele zużywania elementów systemu HSZG-TSZP. Opracowano też model uwzględniający występowanie nagana i model poziomu ogólnego hałasu podczas uderzeń zaworu o gniazdo. W kolejnej części pracy omówiono przeprowadzone badania eksperymentalne. Przedstawiono opracowane stanowiska badawcze, obiekt, przebieg badań, uzyskane wyniki i analizę błędów pomiarów. W kolejnej części pracy przedstawiono model symulacyjny oporów ruchu i zużycia elementów systemu HSZG-TSZP. Zamieszczono przykładowe wyniki obliczeń symulacyjnych. W przedostatniej części pracy przedstawiono zależności matematyczne, uzależniające sumę przepływów mediów w szczelinie między trzonkiem zaworu i prowadnicą oraz między przylgniami gniazda i zaworu od zużycia elementów systemu HSZG-TSZP. W ostatniej części przedstawiono wnioski i zalecenia dotyczące przyszłych kierunków badań.
EN
The solution to tribological problems in systems with lightweight valves in cam and camless valvetrain in internal combustion engines has been proposed in the book. The first problem is the seat wear of valve and its seat insert. The second is friction and wear of valve stem and valve guide. The solution to these two problems is achieved by recognition of tribological processes and phenomena in the mentioned friction contact zones for these lightweight valves made from titanium alloys and ceramics, driven by cam and camless drive. It has been performed the experimental and theoretical analysis of the major phenomena that occur during the process of seat wear for lightweight valve and its seat insert and the process of mixed friction and wear between the lightweight valve stem and its guide, at the changing participation of lubricated friction. As a result of the analysis, it has been proposed the models of motion resistance and of wear. It allows to choose the slowly varying geometric and material parameters and rapidly changing force in the system guide - lightweight valve –seat insert, in a way allowing optimal operation of lightweight valve during the inter-repairing period of combustion engine. As the optimization criterion is proposed to minimize the sum of the media flow between the seats of valve and its seat insert and in the gap between the valve stem and its guide, within a fixed cycle engine. It has been done the critical evaluation of models described in the literature of friction. On that basis the models have been developed, taking into account the presence of a protective layer on the surface of the valve and/or its seat insert and guide. The first model is to perform simulations of motion resistance between the stem and the guide in conditions close to reality. The second one being fast, based on neural networks can be used in the control algorithm, valve drive, mostly to friction compensation. It has been developed the modular model for wear of valve, its guide and seat insert taking into account the existence of a protective layer on the surface of the valve and / or its seat insert and guides. It allows to perform simulation of wear process in conditions close to reality. It has been developed the network clearly linking between the wear model and the model of motion resistance for components of the seatvalve-guide assembly. It has been elaborated the acceptable settling velocity of the valve in respect to its seat insert due to the wear and noise emissions. Rational materials have been chosen for valve stem and its guide due to assumed limited use of the lubrication. Experimental studies have been performed. Elaborated research stands, object, research process, obtained results and analysis of measurement errors have been shown in the book. It has been elaborated the simulation model of motion resistance and of wear for the TSZP-HSZG (namely: Valve stem T – grease S – contamination Z – valve guide P – valve head H – grease S – contamination Z – seat insert G) system and of the media flow in the gap between the stem and the guide and between the seats of valve and its seat insert during wear process of TSZP-HSZG system.
Rocznik
Tom
Strony
1--224
Opis fizyczny
Bibliogr. 264 poz., fot. kolor., wykr.
Twórcy
autor
  • Politechnika Łódzka. Wydział Mechaniczny, Katedra Konstrukcji Precyzyjnych
Bibliografia
  • [1] Abele M.: A lightweight valve made from a nickel alloy, Nickel magazine, March, 2004, http://www.nickelinstitute.org/index.cfm/ci_id/12774/la_id/1/document/1/re_id/0
  • [2] Adamus J.: Wybrane problemy kształtowania blach tytanowych, 17th International Scientific and Technical Conference „Design and Technology of Drawpieces and Die Stampings, Poznań-Wąsowo, wrzesień 2008.
  • [3] Allen J., Law D.: Production Electro-Hydraulic Variable Valve-Train for a New Generation of I.C. Engines, SAE Technical Paper 2002-01-1109, 2002.
  • [4] Allen J., Law D.: Advanced Combustion Using a Lotus Active Valve Train. Internal Exhaust Gas Recirculation Promoted Auto Ignition, IFP International Congress, 2001.
  • [5] Andersson P., Juhanko J., Nikkilä A.-P., Lintula P.: Influence of topography on the running-in of water-lubricated silicon carbide journal bearings, Wear 201 (1996), pp. 1-9.
  • [6] Anon: “Magnavox” (1988) A proposal for the Magnavox Electronic Valve System. Document serial number MX-18-145, published by Magnavox (a USA subsidiary of Phillips) 15/11/88.
  • [7] Appel F., Ochring M., Paul JDH, Klinkenberg C., Carneiro T.: Intermetallics 2004; 12 (7-9):798.
  • [8] Archard J.F.: The temperature of rubbing surfaces. Wear, 2 (1958-9), pp. 438.
  • [9] Armstrong-Helouvry B., Dupont P., Canudas de Wit C.: A survey of models, analysis tools and compensation methods for the control of machines with friction, (1994), Automatica, 30(7), pp. 1083-1138.
  • [10] Arnold E.B., Bara M., Zang D.: Development and application of a cycle for evaluating factors contributing to diesel engine valve guttering, SAE Technical Paper 880669, (1988).
  • [11] Atapour M., Ashrafizadeh F.: Tribology and cyclic oxidation behavior of plasma nitrided valve steel, Surface & Coatings Technology, Vol. 202, (2008), pp. 4922- 4929.
  • [12] Avitzur B., Huang C.K., Zhu Y.D.: A Friction Model Based on the Upper-Bound Approach to the Ridge and Sublayer Deformations, Wear 95, (1), 1984, pp. 59-77.
  • [13] Awrejcewicz J., Olejnik P.: Friction pair modeling by a 2-DOF system, numerical and experimental investigations, (2005), International Journal of Bifurcation and Chaos, 15 (6), pp. 1931-1944.
  • [14] Berg M., Kachel G., Kuhn P.: (1997) Mechanical Fully-Flexible Valve Control with delta-sT. SAE Technical Paper 970251.
  • [15] Bertsch A., Hannibal W.: (1997) Vast – A new variable valve timing system for vehicle engines, SAE Technical Paper 980769.
  • [16] Bhushan B., Israelachvili J.N., Landman U.: Nanotribology: Friction, wear and lubrication at the atomic scale, (1995), Nature, 374, 607.
  • [17] Bhushan B., Peng W.: Contact mechanics of multilayered rough surfaces, Applied Mechanics Rev, Vol. 55, No. 5, September 2002.
  • [18] Bhushan B.: Modern Tribology Handbook, CRC Press, 2001-1690.
  • [19] Birch S.: Porsche developments, Automotive Engineering International, July 2000.
  • [20] Blau P.J.: A Wear Model for Diesel Engine Exhaust Valves, Materials Science and Technology Division, ORNL/TM-2009/259.
  • [21] Blau P.J.: Retrospective survey of the use of laboratory tests to simulate internal combustion engine materials tribology problems, ASTM STP Paper 1199 (1993).
  • [22] Bogacz R., Ryczek B.: Almost periodic vibration excited by dry friction (2000), Mechanics & Mechanical Egeneering, 4(2), pp. 197-212.
  • [23] Bowden F.P., Leben L.: The nature of sliding and the analysis of friction (1939), Proceedings of the Royal Society of London, A, 169, pp. 371-391.
  • [24] Brüstle C., Schwarzenthal D.: The “Two in One” Engine – Porsche’s Variable Valve System (VVS), SAE Technical Paper 980766, 1998.
  • [25] Brüstle C., Schwarzenthal D.: VarioCam Plus – A Highlight of the Porsche 911 Turbo Engine, SAE Technical Paper 2001‐ 01‐ 0245, 2001.
  • [26] Burridge R., Knopoff L.: Model and theoretical seismicity (1967), Bulletin of the Seismological Society of America, 57 (3), pp. 341-371.
  • [27] Burwell J.T., Strang C.D.: On the empirical law of adhesive wear, Journal of Applied Physics, Vol. 23, No. 1, 1952, pp. 18-28.
  • [28] Challen J.M., Oxley P.L.B.: An explanation of the different regimes of friction and wear using asperity deformation models, Wear, 53 (2), 1979, pp. 229-243.
  • [29] Canudas de Wit C.: Modelling and Control of Systems with Dynamic Frciction. Mini-Course on: Control of Systems with Dynamic Friction, (2003).
  • [30] Chun K.J., Kim J.H., Hong J.S.: A study of exhaust valve and seat insert wear depending on cycle numbers, Wear, Vol. 263, Issues 7-12, 2007, pp. 1147-1157.
  • [31] Clemens H., Kestler H., Eberhardt N., Knabl W.: in: Kim Y-W, Dimiduk D.M., Lorretto M.H., editors. Gamma titanium aluminides 1999. Warrendale (PA): TMS; 1999, p. 209.
  • [32] Cope D., Wright A., Corcoran C., Pasch K.,. Fischer D.: Fully Flexible Electromagnetic Valve Actuator: Design, Modeling and Measurement”, SAE Technical Paper 2008‐ 01‐ 1350, 2008.
  • [33] Cummins L.: Internal Fire, Carnot Press, 2000.
  • [34] Dua H.L., Dattaa P.K., Lewis D.B., Burnell-Graya J.S.: Air oxidation behaviour of Ti---6Al---4V alloy between 650 and 850°, Corrosion Science, Vol. 36, issue 4, 1994, pp. 631-642.
  • [35] Dymek S.: Charakterystyka wysokotemperaturowych związków międzymetalicznych, Hutnik 6 (1998), pp. 208-223.
  • [36] Edwards C.M., Halling J.: An analysis of the plastic interaction of surface asperities and its relevance to the value of the coefficient of friction, J. Mech. Eng. Sci. 10, (1968), pp. 101-110.
  • [37] Elalem K., Li D.Y.: Dynamical simulation of an abrasive wear process, Journal of Computer-Aided Materials Design, 6, 1999, pp. 185-193.
  • [38] El-Hakim O., Salama M.M.: Velocity Distribution Inside and Above Branched Flexible Roughness. Journal of Irrigation and Drainage Engineering, 118 (6), 1992, pp. 914-927.
  • [39] Emmens W.C.: The Influence of surface rougness on friction, in: Proceedings of the Fifteenth IDDRG International Conference on Controlling Steel Metal Forming Process, Michigan, 1988, pp. 63-70.
  • [40] Felder E., Samper V.: Experimental study and theoretical interpretation of frictional mechanism in steel sheet forming, Wear 178 (1993) 85-94.
  • [41] Flierl R., Klüting M.: The Third Generation of Valvetrains – New Fully Variable Valvetrains for ThrottleFree Load Control, SAE Technical Paper 2000‐01‐1227, 2000.
  • [42] Fouquet V., Pichon L., Drouet M., Straboni A.: Plasma assisted nitridation of Ti-6Al-4V, Applied Surface Science, Vol. 221, issues 1-4 (2004), pp. 248-258.
  • [43] Fowles P.E.: The statistical application of a thermal EHL theory for individual asperity-asperity collisions to the sliding contact of rough surfaces, ASME Journal of Lubrication Technology (1975), pp. 311-320.
  • [44] Fricke R.W., Allen C.: Repetitive impact-wear of steels, Wear, Vol. 163, 1993, pp. 837-847.
  • [45] Fronius S., Trankner G.: Taschenbuch Maschinenbau, Band 1/ii Grundlagen, 3rd Edition, VEB Verlag Technik, Berlin, 1975.
  • [46] Fujiki F., Makoto K.: New PM seat insert materials for high performance engines, SAE Technical Paper 920570, (1992).
  • [47] Garjonis J., Kačianauskas R., Stupak E., Vadluga V.: Investigation of contact behaviour of elastic layered spheres by FEM, Mechanika, Nr 3(77), 2009, pp. 5-12.
  • [48] Garrison W.M.: Kruschov’s rule and the abrasive wear resistance of multiphase solids, Wear, Vol. 82, No. 2, 1982, pp. 213-220.
  • [49] Gąsowski W.: Studium wpływu wybranych czynników na działanie rozpylaczy kolejowych silników wysokoprężnych, Poznań, Wyd. Politechniki Poznańskiej 1981.
  • [50] Gebauer K.: Performance, tolerance and cost of TiAl passenger car valves, Intermetallics 14 (2006), pp. 355-360.
  • [51] Giles W.: Valve problems with lead free gasoline, SAE Technical Paper 710368, (1971).
  • [52] Gomes J.R, Miranda A.S., Vieira J.M., Silva R.F.: Sliding speed-temperature wear transition maps for Si3N4/iron alloy couples, Wear 8786, (2001), pp. 1-6.
  • [53] Gould L., Richeson W., Ericson F.: Performance Evaluation of a Camless Engine Using Valve Actuators with Programmable Timing, SAE Technical Paper 910450, 1991.
  • [54] Green A.P.: Friction between Unlubricated Metals: A Theoretical Analysis of the Junction Model, Proceedings of the Royal Society of London. Series A, (1955), Vol. 228, Issue 1173, pp. 191-204.
  • [55] Griffiths P.J., Mistry K.N., Philips B.D.A.: (1988) An electro-hydraulic valve operating system for engine research and development. Experimental methods in engine research and development, I.Mech.E. Seminar 1988.
  • [56] Griffiths P.J. and Mistry K.N.: (1988) Variable valve timing for fuel economy improvement, the Mitchell system, SAE Technical Paper 880392.
  • [57] Grohn M.: The New Camshaft Adjustment System by Mercedes Benz-Design| and Application in 4 Valve Engines, SAE Technical Paper 901727, 1990.
  • [58] Grudziński K., Warda B.J., Zapłata M.: Badanie pary ślizgowej jako układu o dwóch stopniach swobody, Tribologia, 1996, t. 27, nr 5, s. 631-651.
  • [59] Grudziński K.: Metodyka analitycznego wyznaczania stanu obciążenia prowadnic i przemieszczenia elementów zespołów ruchów przesuwnych obrabiarek, Politechnika Szczecińska, Szczecin 1979.
  • [60] Guembel L., Everling E.: Reibung und schmierung im maschinenbau, Berlin, M. Krayn, 1925.
  • [61] Guether V., Otto A., Kestler H., Clemens H.: in: Kim Y-W, Dimiduk D.M., Lorretto M.H., editors. Gamma titanium aluminides 1999. Warrendale (PA): TMS; 1999, p. 225.
  • [62] Haessig Jr. D.A., Friedland B.: On the Modeling and Simulation of Friction, Journal of Dynamic Systems, Measurements and Control, 113, (1991), pp. 354-362.
  • [63] Hamilton D.B., Halowit J.A., Allen C.M.: A theory of lubrication by microirregularities. A Theory of Lubrication by Micro-irregularities, Journal of Basic Engineering, 88, (1966), pp. 177-175.
  • [64] Hancock P., Nicholls J.R., Stephenson D.J.: The mechanism of high temperature erosion of coated superalloys, Surface and Coatings Technology, Vol. 32, Issue 1-4, 1987, pp. 285-304.
  • [65] Harrison J.A., Stuarat S.J., Brenner D.W.: Atomic-Scale Simulation of Tribological and Related Phenomena, Handbook of Micro/Nanotribology, 1998.
  • [66] Hatano K., Lida K., Higashi H., Murata S.: Development of a New MultiMode Variable Valve Timing Engine, SAE Technical Paper 930878, 1993.
  • [67] Havis S.K., Talia I.E., Scattergood R.O.: Erosion in multiphase systems, Wear, Vol. 108, No. 2, 1986, pp. 139-155.
  • [68] Hayward A.T.J.: The Viscosity of Bubbly Oil, Journal Inst. Petrol, Vol. 48, Mai 1962, pp. 156-164.
  • [69] Hebda M., Wachal A.: Trybologia, Warszawa, WNT 1980.
  • [70] Hensen R.H.A.: Controlled Mechanical Systems with Friction, Ph.D. thesis, Eindhoven Univerity of Technology, Department of Mechanical Engineering, Systems and Control Group (2002).
  • [71] Hiroshi Yamagata: The science and technology of materials in automotive engines, Woodhead Publishing Ltd, Cambridge England 2005.
  • [72] Hofmann C.M., Jones D.R., Neumann W.: High temperature wear properties of seat insert alloys, SAE Technical Paper 860150, SAE Transactions, 95, (1986).
  • [73] Hoyer U., Rahnavardi P.: Untersuchung mit Ventilen aus Leichtbau- Werkstoffen. Motortechnische Zeitschrift, 9/1999.
  • [74] Hsu S.M., Shen M.C., Ruff A.W.: Wear prediction for metals. Tribology International, 1997, 30(5), pp. 377-383.
  • [75] Hutchings I.M.: Tribology: friction and wear of engineering materials. Ed. Edward Arnold. London, Melburne, Auckland, 1992.
  • [76] Jang J., Iwasaki I., Moor J.J.: Effect of martensite and austenite on grinding media wear, Wear, Vol. 122, No. 3, 1988, pp. 285-299.
  • [77] Jiaren J., Stott F.H., Stack, M.M.: A mathematical model for sliding wear at elevated temperatures, Wear, vol. 181-183 (1995), pp. 20-31.
  • [78] Johansson B.: Förbränningsmotorer del 2, 2004.
  • [79] Johnson D.E., Johnson D.S.: Engine with Pneumatic Valve Actuation, US Patent 4702147, October 1987.
  • [80] Jóźwiak P., Siczek K.: Badania wpływu osadów na zużycie zaworu, Archiwum Motoryzacji, No. 1, 2011.
  • [81] Kaahaaina N., Simon A., Vaton P., Edwards C.: Use of Dynamic Valving to Achieve Residual-Affected Combustion, SAE Technical Paper 2001-01-0549, 2001.
  • [82] Kaczmarek Ł.: Powłoki z faz międzymetalicznych na osnowie g-TiAl dla ochrony stopów tytanu przed utlenianiem w wysokich temperaturach, praca doktorska, Politechnika Łódzka, Łódź 2006.
  • [83] Kałdoński T.: Badania i modelowanie procesów zużywania ściernego hydraulicznych par precyzyjnych, WAT, Warszawa, 2008.
  • [84] Karnopp D.: Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems, ASME Journal of Dynamic Systems, Measurement and Control, Vol. 107 (1985), pp. 100-103.
  • [85] Kato K.: Classification of wear mechanisms/models, Proceedings of the Institutions of Mechanical Engineers, Vol. 216, Part J: Journal of Engineering Tribology, 2002, pp. 349-355.
  • [86] Katta R.R., Polycarpou A.A., Hanchi J.V.: Flash temperature during impact of layered elastic solids, Tribology International, 43 (2010), pp. 1768-1772.
  • [87] Kaufman D.: ENGINE BUILDER Magazine, 11/25/2008, http://www.underhoodservice.com/Article/40385/tech_feature_understanding_valve_design_and_alloys.aspx
  • [88] Kogut L., Etsion I.: Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat, Journal of Applied Mechanics, Vol. 69, 2002, pp. 657 -662.
  • [89] Komvopoulos K., Choi D.H.: Elastic finite element analysis of multi-asperity contacts, Journal of . Tribology, Vol. 114, Issue 4, (1992), pp. 823-831.
  • [90] Kozaczewski W.: Potencjalne możliwości poprawy parametrów silników o zapłonie iskrowym przez stosowanie zmiennych faz rozrządu, Konferencja naukowa AUTOPROGRES'93, Jachranka 1993.
  • [91] Kramer B.M., Judd P.K.: Computational design of wear coatings, Journal of Vacuum Sci. Technol., A 3 (6), Nov/Dec, 1985, pp. 2439-2444.
  • [92] Kreuter P., Heuser P., Schebitz M.: (1992) Strategies to improve SI engine performance by means of variable intake lift, timing and duration. SAE paper 920449.
  • [93] Kreuter P., Heuser P., Murmann J.: (1998) The META VVH system – A continuously variable valve timing system, SAE Technical Paper 980765.
  • [94] Król S.: Wysokotemperaturowe utlenianie stopów na osnowie fazy gamma-TiAl: procesy w metalicznym podłożu, Advances in Materials Sciences, Vol. 8, No. 1, 2008, pp. 63-71.
  • [95] Krüger K.: Einfluss hydraulischer Nockenwellenversteller auf die Dynamik von Ventil- und Steuertrieben, DI Dissertation, Technischen Universität München, 2009.
  • [96] Krzemiński-Freda H.: Teoretyczne podstawy udokładnionych obliczeń dwurzędowych, wahliwych łożysk tocznych, Tribologia, nr 1, 1990, ss. 4-7.
  • [97] Kudinow W.A.: Gidrodinamiczeskaja tieorija połużidkostnogo trienija, Trudy Wsiesojuznoj Konfieriencji po trieniju i iznosu w maszinach, Moskwa, 1960.
  • [98] Lane M.S., Smith P.: Developments in sintered valve seat inserts, SAE Technical Paper 820233 (1982).
  • [99] Lancefield T., Methley I., Räse U., Kuhn T.: The application of variable event valve timing to a modern diesel engine, 2009.
  • [100] Lancefield T.M., Gayler R.J. Chattopadhay: (1993) The practical application and effects of a Variable Valve Timing System, SAE Technical Paper 930825.
  • [101] Lang O., Salber W., Hahn J., Pischinger S., Hortmann K., Bruker C.: Thermodynamical and Mechanical Approach Towards a Variable Valve Train for the Controlled Auto Ignition Combustion Process, SAE Technical Paper 2005-01- 0762, 2005.
  • [102] Langen P., Cosfeld R., Grudno A., Relf K.: Der Elektromechanisches Ventiltrieb als Basis zukünftiger Ottomotorkonzepte. BMW Group, München. 21 Internationales Wiener Motorensymposium, 4-5 Mai 2000.
  • [103] Larsen D.E., Wheeler D.A., London B.: In: Proceedings of processing and fabrication of advanced materials III. Warrendale (PA): TMS; 1994, p. 631.
  • [104] Law D., Kemp D., Allen J., Kirkpatrick G., Copland T.: Controlled Combustion in a IC-Engine with a Fully Variable Valve Train, SAE Technical Paper 2001-01-0251, 2001.
  • [105] Lee J-C., Lee C-W., Nitkiewicz J.A.: (1995) The application of a lost motion VVT system to a DOHC SI engine. SAE Technical Paper 950816.
  • [106] Lenz H.P., Geringer B., Smetana G., Dachs A.: (1989) Initial test results of an electro-hydraulic variable valve actuation system on a firing engine. SAE Technical Paper 890678.
  • [107] Leśniak W.: Eksploatacja urządzeń wtryskowych samochodowych silników wysokoprężnych, Warszawa, WKŁ 1969.
  • [108] Lewis R., Dwyer-Joice R.S.: Wear of diesel engine inlet valves and seat inserts, Proc. Inst. Mech. Engs., Vol. 216, Part D Journal Automobile Engineering.
  • [109] Lewis R., Dwyer-Joice R.S.: Automotive Engine Valve Recession, Engineering Research Series, No. 8, 2002, Duncan Dowson.
  • [110] Li X-J., Cheng G-A., Xue W-B., Zheng R-T., Cheng Y-J.: Wear and corrosion resistant coatings formed by microarc oxidation on TiAl alloy, Materials Chemistry and Physics, Vol. 107 (2008), pp. 148-152.
  • [111] Lim S.C., Ashby M.F.: Wear mechanism maps, Acta metallica, No. 35 (1), 1987, pp. 1-24.
  • [112] Ling F.F., Pan C.H.T. (eds.): Approaches to Modeling of Friction and Wear, Springer-Verlag, New York, 1988.
  • [113] Liu H., Hsu S.M.: Modeling of microfracture-induced wear and wear transition in sliding of polycrystalline alumina ceramics, Wear, Vol. 195, Issues 1-2, (1996), pp. 169-177.
  • [114] Liu Y., Yang D., He S., Wu W.: Dry sliding wear of Ti-6Al-4V alloy in air and vacuum, Transactions of Nonferrous Metals Society of China, Vol. 13, No. 5, 2003, pp. 1137-1140.
  • [115] Ludema K.C., Bayer R.G. (eds.): Tribological Modeling for Mechanical Designers, ASTM STP 1105, American Society for Testing and Materials, Philadelphia, PA, 1991.
  • [116] Luria D., Taitel Y., Stotter A.: The Otto-Atkinson Engine – A new Concept in Automotive Economy, SAE Technical Paper 820352, 1982.
  • [117] Ma J., Schock H., Carlson U., Höglund A., Hedman M.: Analysis and Modeling of an Electronically Controlled Pneumatic Hydraulic Valve for an Automotive Engine, SAE 2006-01-0042, 2006.
  • [118] Ma J., Stuecken T., Chock H., Zhu G., Winkelman J.: Model Reference Adaptive Control of a Pneumatic Valve Actuator for Infinitely Variable Valve Timing and Lift, SAE Technical Paper 2007-01-1297, 2007.
  • [119] Malatesta M.J., Barber G.C., Larson J.M., Narasimhan S.L.: Development of a laboratory bench test to simulate seat wear of engine poppet valves, Tribological Transactions, No. 36, (1993), pp. 627-632.
  • [120] Marx W., Müller R.: Ein Beitrag zum Einlaßventil-Verschleiß an aufgeladenen Viertakt-Dieselmotoren, Motortechnische Zeitschrift No. 29, 1968, Seite 237-240.
  • [121] Masouros G., Dimarogonas A., Lefas K.: A model for wear and surface roughness transients during running-in of bearings, Wear 45 (1977), pp. 375-382.
  • [122] Matsushima N.: Powder metal seat inserts, Nainen Kikan, Vol. 26, 1987, pp. 52-57.
  • [123] Matzke W.: Konstrukcja rozrządu silników szybkoobrotowych”, WKiŁ, Warszawa 1974.
  • [124] Matzke W.: Projektowanie rozrządu czterosuwowych silników trakcyjnych. Wydawnictwa Komunikacji i Łączności. Warszawa 1989.
  • [125] McGeehan J.A., Gilmore J.T., Thompson R.M.: How sulphated ash in oils causes catastrophic diesel exhaust valve failures, SAE Paper 881584 (1988).
  • [126] Michałowska J.: Paliwa, oleje, smary. Wydawnictwa Komunikacji i Łączności, Warszawa, 1977.
  • [127] Miller R.: High – pressure Supercharging System, US Patent 2670595, 1954.
  • [128] Milovanovic N., Turner J., Kenchington S., Pitcher G., Blundell D.: Active Valvetrain for Homogenous Charge Compression Ignition, International Journal of Engine Research, Vol. 6, No. 4, 2005.
  • [129] Molinari A., Straffelini U, G., Tesi B., Bacci T.: Dry sliding wear mechanisms of the Ti6Al4V alloy, Wear, Vol. 208, 1997, pp. 105-112.
  • [130] Morinigo F., Stuart K., Schneider L.: (1997) Variables of electromagnetic valve actuator performance. Engine technology international, November 1997, pages 84 to 88.
  • [131] Moriya Y., Watanabe A., Uda H., Kawamura H., Yoshioka M.: A Newly Developed Intelligent Variable Valve Timing System – Continuously Controlled Cam Phasing as Applied to a New 3 Liter Inline 6 Engine, SAE Technical Paper 960579, 1996.
  • [132] Mrowec S.: Kinetyka i mechanizm utleniania metali, Wydawnictwo Śląsk, 1982.
  • [133] Mrowec S., Weber T.: Nowoczesne tworzywa żaroodporne, WNT, Warszawa, 1982.
  • [134] Munnannur A., Kong S.C., Reitz R.D.: Performance Optimization of Diesel Engines with Variable Intake Valve Timing Via Genetic Algorithms, SAE Technical Paper 2005-01-0374, 2005.
  • [135] Murata Y., Kusaka J., Odaka M., Daisho Y., Kawano D., Suzuki H., Ishii H., Goto Y.: Achievement of Medium Engine Speed and Load Premixed Diesel Combustion with Variable Valve Timing, SAE Technical Paper 2006-01-0203.
  • [136] Murr L.E., Gaytan S.M., Ceylan A., Martinez E., Martinez J.L., Hernandez D.H., Machado B.I., Ramirez D.A., Medina F., Collins S., Wicker R.B.: Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting, Acta Materialia 58 (2010), pp. 1887-1894.
  • [137] Nakagawa M., Ohishi S., Andoh K., Miyazaki S., Mori K., Machida Y.: Development of hardsurfacing nickel-based alloy for internal combustion engine intake valves, JSAE Rev., 1989, pp. 68-71.
  • [138] Narasimhan S.L., Larson J.M.: Valve gear wear and materials, SAE Technical Paper 851497, SAE Transaction, No. 94 (1985).
  • [139] NevinR.M., Sun Y., Gonzalez M.A. and Reitz R.D.: PCCI Investigation Using Variable Intake Valve Closing in a Heavy Duty Diesel Engine, SAE Technical Paper 2007-01-0903.
  • [140] Nicholls J.R. and Stephenson D.J.: Monte Carlo modelling of erosion processes, Wear, Vol. 186-187, Issue PART 1, 1995, pp. 64-77.
  • [141] Nogueira I., Dias A.M., Gras R., Progri R.: An experimental model for mixed friction during running-in Wear 253 (2002) 541-549.
  • [142] Oczoś K.: Kształtowanie ubytkowe tytanu i jego stopów w przemyśle lotniczym i technice medycznej, część I, Mechanik 8-9/2008.
  • [143] de Ojeda W.: Impact of Variable Valve Timing on Low Temperature Combustion http://www1.eere.energy.gov/vehiclesandfuels/pdfs/deer_2010/monday/presentati ons/deer10_de_ojeda.pdf
  • [144] Okamoto H.: Al.-Ti (Aluminium – Titanium). Journal of Phase Equilibria, 14(1993), pp. 120-121.
  • [145] Oliver W.C., Pharr G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1992, pp. 1564-1583.
  • [146] Ootani T., Yahata N., Fujiki A., Ehira A.: Impact wear characteristics of engine valve and valve seat insert materials at high temperature (Impact wear tests of austenitic heat-resistant steel SUH36 against Fe-base sintered alloy using plane specimens), Wear, Vol. 188, 1995, pp. 175-184.
  • [147] Ootani T., Yahata N., Fujiki A., Ehira A.: Impact wear characteristics of engine valve and valve seat insert materials at high temperature (impact wear tests of martensitic heat-resistant steel SUH3 against Fe-base sintered alloy using plane specimens), JSME international journal. Series C, dynamics, control, robotics, design and manufacturing, 39(1), 1996, pp. 115-122.
  • [148] Östvik R., Christensen H.: Changes in surface topography with running-in, in: Proceedings of the Tribology Conventions (Part 3P), Vol. 183, Institute of Mechanical Engineering, London, 1968/1969, pp. 57-65.
  • [149] Parker P.H.: The variable valve timing mechanism for the Rover K16 engine Part 2: application to the engine and the performance obtained, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Sage Publications, Vol. 214, No. 2 / 2000, pp. 207-216.
  • [150] Pawlus P.: A study on the functional proprieties of honed cylinders surface during running-in, Wear 176 (1994) 247-254.
  • [151] Peng Q.F.: Improving abrasion wear by surface treatment, Wear, Vol. 129, Issue 2, 1989, pp. 195-203.
  • [152] Peterson K.S., Stefanopoulou A.G.: ExtremumSeekingControl for Soft Landing of an ElectromechanicalValve Actuator, Automatica, 40(6), 2004, pp. 1063- 1069.
  • [153] Phillips N.S.L.: Lightweight Valve Train Materials, Heavy Vehicle Propulsion Materials Program Quarterly Progress Report for October through December 2006, OAK RIDGE NATIONAL LABORATORY.
  • [154] Pischinger M., Hagen J., Salber W., Esch T.: Möglichkeit der ottomotorischen Prozeβfűhrung bei Verwendung des elektromechanischen Ventiltriebs. 7. Aachener Kolloquium Fahrzeug-und Motortechnik 1998. FEV Motortechnik GmbH Co. KG, Aachen 1998.
  • [155] Põdra P., Andersson S.: Finite element analysis wear simulation of a conical spinning contact considering surface topography, Wear, Vol. 224, No. 1, 1999, pp. 13-21.
  • [156] Polycarpou A.A., Soom, A.: Application of a Two-Dimensional Model of Continuous Sliding Friction to Stick-Slip, Wear, Vol. 181-183, Part I (1995), pp. 32-41.
  • [157] Pope J.: Techniques used in achieving a high specific airflow for highoutput medium-speed diesel engines, Transactions ASME Journal of Engineering Power, no 89, (1967), pp. 265-275.
  • [158] Popp K., Stelter P.: Non-linear oscillations of structures indyced by dry friction, (1990), in Schiehlen W., ed.: Non-linear Dynamics in Engineering Systems, Springer, New York.
  • [159] Progri R., Paffoni B., Robbe-Valloire F., Gras R.: Introduction de l’Elastoplasticité dans la Modélisation du Régime de Lubrification Mixte, in: Proceedings of the Journées Internationales Francophones de Tribologie, Besançon, 2000.
  • [160] Pyle W., Smrcka N.: Effect of lubricating oil additives on valve recession in stationary gaseous-fuelled four-cycle engines, SAE Technical Paper 932780 (1993).
  • [161] Rabinowecz E.: Friction and Wear of Materials (1965), Willey, New York.
  • [162] Rabinowicz E: The nature of the static and kinetic coefficients of friction, (1951), Journal of Applied Physics, 22(11), pp. 1373-1379.
  • [163] Rawski F., Szpica D.: Identyfikacja parametrów modelu przepływu powietrza przez szczelinę zaworową w tłokowym silniku spalinowym, MOTROL, 2006, ss. 188-197.
  • [164] Riahi A.R., Alpas A.T.: Wear map for grey cast iron, Wear, No. 255 (2003), pp. 401-409.
  • [165] Richeson W., Erickson F.: Pneumatic Actuator with Permanent Magnet Control Valve Latching, US Patent 4852528, August 1989.
  • [166] Robbe-Valloire F., Paffoni B., Progri R., Gras R.: An asperity based model for friction in mixed lubrication, in: Proceedings of the Second World Tribology Congress, Vienna, 2001, pp. 77-84.
  • [167] Robbe-Valloire F., Paffoni B., Progri R., Gras R.: Modélisation du Frottement Mixte entre Surfaces Parallèles Fonctionnant en Environnement Lubrifié, in: Proceedings of Journées Internationales Francophones de Tribologie, Neuchˆatel, 1997, pp. 197-203.
  • [168] Robbins M.O., Krim, J.: Energy Dissipation in Interfacial Friction, Materials Research Society Bulletin, 23 (6), (1998), pp. 23-26.
  • [169] Rudnik S.: Metaloznawstwo. PWN, Warszawa 1983.
  • [170] Qiu Ming, Zhang Yong-Zhen, Shangguan Bao, Du San-Ming, Yan Zhen- Wei: The relationships between tribological behaviour and heat-transfer capability of Ti6Al4V alloys, Wear, Vol. 263, 2007, pp. 653-657.
  • [171] Schechter M., Levin M.: Camless Engine, SAE Technical Paper 960581, 1996.
  • [172] Selmic RR, Lewis FL: Neural network approximation of piecewise continuous functions. Application to friction compensation. IEEE Transactions Neural Network 13, (2002), pp. 745-751.
  • [173] Seock-Sam Kim, Young-Hun Chae, Dae-Jung Kim: Tribological characteristics of silicon nitride at elevated temperatures, Tribology Letters, Vol. 9, No. 3-4, 2000, pp. 227-231.
  • [174] Sheira L.L.: Ochrona przed korozją, t. 2, WNT, Warszawa, 1966.
  • [175] Shikida T., Nakamura Y., Nakakubo T., Kawase H.: Development of the High Speed 2ZZGE Engine, SAE Technical Paper 2000‐ 01‐ 0671.
  • [176] Siczek K.: Problemy tribologiczne bezkrzywkowego napędzania zaworów rozrządu tłokowego silnika spalinowego, sprawozdanie z projektu badawczego NN 502 394535, Politechnika Łódzka, Łódź, 2010.
  • [177] Siczek K., Kuchar M.: The analysis of dynamics for valves of camless valve train with electromechanic actuators and nonlinear springs, Proceedings of 10th Conference on Dynamical Systeme Theory and Aplication, December 7-10, 2009, Lodz, Poland, pp. 361-368.
  • [178] Siczek K., Zbierski K.: Properties and Research Direction for Leightweight Valves for Valve Timing in Combustion Engine, Jornal of KONES, 2009.
  • [179] Siczek K., Kuchar M.: The Simulation Researches on the Wear for Elements of the Seat Insert-Valve-Valve Guide Assembly, Journal of Kones. Powertrain and Transport, Vol. 17, No. 4, 2010, pp. 431-438.
  • [180] Siczek K.: Wykorzystanie pomiaru poziomu hałasu w czasie badań oporów ruchu w układzie gniazdo – zawór – prowadnica, dla bezkrzywkowego napędu zaworu, Combustion Engines, PTNSS–2011–SC–065, 2011.
  • [181] Siczek K.: The Researches on the Tribological Properties of Elements of the Seat Insert-Valve-Valve Guide Assembly, Journal of Kones, Powertrain and Transport, Vol. 17, No. 4, 2010, pp. 423-430.
  • [182] Siczek K.: Badania trwałości ponaprawczej ślizgowych łożysk rozrusznika, rozprawa doktorska, Politechnika Poznańska, Poznań, 2003.
  • [183] Simm W., Freti S.: Abrasive wear of multiphase materials, Wear, Vol. 129, No. 1, 1989, pp. 105-121.
  • [184] Skopp A., Woydt M., Habig K.-H.: Tribological behavior of silicon nitride materials under unlubricated sliding between 22 °C and 1000 °C, Wear, Vol. 181- 183 (1995), pp. 571-580.
  • [185] Sonsino C.M.: Fatigue design of structural ceramic parts by the example of automotive intake and exhaust valves, International Journal of Fatigue, Vol. 25, (2003), pp. 107-116.
  • [186] Sreenath A.V., Raman N.: Mechanism of smoothing of cylinder liner surface during running-in, Int. Tribol. Int. April (1976) 55-62.
  • [187] Stachowiak G. W.: Wear – Materials, Mechanisms and Practice, Wiley, Sussex, 2006.
  • [188] Stańczyk K.: Toyota Yaris – diabeł tkwi w szczegółach, AUTO – Technika Motoryzacyjna 5'99.
  • [189] Stone C.R., Kwon E.K.M.: Variable valve timing for ic engines, Automotive Engineer, August/September 1985.
  • [190] Straffelini G., Molinari A.: Dry sliding wear of Ti–6Al–4V alloy as influenced by the counterface and sliding conditions, Wear, Vol. 236, 1999, pp. 328-338.
  • [191] Straffelini G., Pellizzari M., Maines L.: Effect of sliding speed and contact pressure on the oxidative wear of austempered ductile iron, Wear, Vol. 270, (2011), pp. 714-719.
  • [192] Styburski W.: Przetworniki tensometryczne. Konstrukcja, projektowanie, uzytkowanie, Wydawnictwa Naukowo-Techniczne, Warszawa, 1971.
  • [193] Sui H., Pohl, H., Schomburg U., Upper G., Heine S.: Wear and friction of PTFE seals, Wear, 224, (1999), pp. 175-182.
  • [194] Sułek M.: Regulacja faz rozrządu, AUTO – Technika Motoryzacyjna 7'94.
  • [195] Sun J.G., Zhang J.M., Andrews M.J., Trethewey J.S., Philips N.S.L., Jensen J.A.: Evaluation of Silicon-Nitride Ceramic Valves, International Journal of Applied Ceramic Technology, 5 (2), 2008, pp. 164-180.
  • [196] Szulc B., Smuk W.: Nowa metoda ciągłej regulacji faz rozrządu, AUTO – Technika Motoryzacyjna 12'88.
  • [197] Tai Ch., Stubbs A., Tsao T.: Modeling and Controller Design of Electromagnetic Engine Valve. Department of Mechanical and Aerospace Engineering University of California, Los Angeles. Proceedings of the American Control Conference Arlington, VA June 25-27, 2001.
  • [198] Tai Ch., Tsao T.: Quiet Seating Control Design of on Electromagnetic Engine Valve Actuator. Department of Mechanical and Aerospace Engineering University of California, at Los Angeles, CA 90095.ASME 2001.
  • [199] Tantet J.A., Brown P.I.: Series 3 oils and their suitability for wider applications, National Petrochemical and Refiners. Association, Paper Tech 65-29L (1965).
  • [200] Tataryn P.D., Sepehri N., Strong D.: Experimental Comparison of Some Compensation Techniques for the Control of Manipulators with Stick-Slip Friction, (1996), Control Engineering Practice, Vol. 4, Issue 9, September 1996, pp. 1209-1219.
  • [201] Tauschek M.J., Newton J.A.: Valve seat distortion, SAE National Passenger Car, Body and Materials Meeting, Detroit, Michigan, Society of Automotive, 1953, pp. 1-5.
  • [202] Theobald M., Lequesne B., Rassem H.: Control of Engine Load via Electromagnetic Valve Actuators. SAE Technical Paper Nr 940916, 1994.
  • [203] Titolo A.: The Variable Valve Timing System – Application on a V8 Engine, SAE Technical Paper 910009, 1991.
  • [204] Trajkovic S., Milosavljevic A, Tunestal P., Bengt J.: FPGA Controlled Pneumatic Variable Valve Actuation, SAE Technical Paper 2006-01-0041, 2006.
  • [205] Trethewey J.S., Grassi J., Longanbach D., Logan C.: MATERIALS FOR AIR HANDLING, HOT SECTION, AND STRUCTURAL COMPONENTS, High- Temperature Advanced Materials for Lightweight Valve Train Components, Heavy Vehicle Propulsion Materials FY 2005, Progress Report http://www1.eere.energy.gov/vehiclesandfuels/pdfs/hv_propulsion_05/4a_trethe wey.pdf
  • [206] Tripp W.C., Graham H.C.: Oxidation of Si3N4 in the Range 1300° to 1500°C, Journal of the American Ceramic Society, Vol. 59, issue 9-10, 1976, pp. 399-403.
  • [207] Turenne S., Fiset M.: Modeling of abrasive particle trajectories during erosion by a slurry jet, Wear, Vol. 162-164, (1993), pp. 679-687.
  • [208] Urata Y., Umiyama H., Shimizu K., Fujiyoshi Y., Sono H., Fukuo K.: (1993), A study of vehicle equipped with non-throttling S.I. engine with early intake valve closing mechanism. SAE Technical Paper 930820.
  • [209] Van Dissel R., Barber G.C., Larson J.M., Narasimhan S.L.: Engine valve seat and insert wear, SAE Technical Paper 892146 (1989).
  • [210] Wachal A.: Some problems of boundry layer investigations, Eurotrib’85, Lyon, 1985.
  • [211] Wang J., Ge S.S., Lee T.H.: Adaptive Friction Compensation for Servo Mechanisms.
  • [212] Watson J., Wakeman R.: Simulation of a Pneumatic Valve Actuation System for Internal Combustion Engine, SAE Technical Paper 2005-01-0771, 2005.
  • [213] Wencelis J.: Zawory tłokowych silników spalinowych. Monografie. Zeszyty Naukowe Politechniki Łódzkiej¸ Filia w Bielsku-Białej nr 42/1997.
  • [214] Wilson N., Dobson C. and Muddell G.: (1993) Active valve train system promises to eliminate camshafts. Institution of Mechanical Engineers. Automotive Engineer Feb/Mar 1993, pp 42-44.
  • [215] Wiśniewski T.S., Banaszek J., Furmański P., Rebow M.: Influence of boundary conditions on temperature distribution in valve seat of IC engine by FEM analysis, Journal of KONES, Bielsko-Biała, 1997, pp. 463-468.
  • [216] Wituszyński K.: Suboptymalna synteza i analiza rozrządu krzywkowego silników spalinowych, Prace Instytutu Technologii i Eksploatacji Maszyn Politechniki Lubelskiej, Seria A nr 17, 1984, Lublin.
  • [217] Wojewoda J., Kapitaniak T., Barron R., Brindley J.: Complex Behaviour of a Quasiperiodically Forced Experimenyal System with Dry Friction, 1993, Chaos, Solitons & Fractals, 3(1), pp. 35-46.
  • [218] Wojewoda J.: Efekty histerezowe w tarciu suchym, Zeszyty Naukowe Politechniki Łódzkiej Nr 1015, Łódź, 2008.
  • [219] Wong K.K., Clark, H.McI.: A model of particle velocities and trajectories in a slurry pot erosion tester, Wear, Vol. 160 (1993), pp. 95-104.
  • [220] Xuefeng T., Bharat B.: A numerical three-dimensional model for thecontact of rough surfaces by variational principle, ASME Journal of Tribology, 118 (1996), pp. 33-42.
  • [221] Yamaguchi J.: Super-economy Lean-burn engines from Mitsubishi and Honda- Techbriefs, Automotive Engineering, Vol. 99, No. 11, November 1991.
  • [222] Yang G.H., Garrison Jr.: Acomparison of microstructural effects on two-body and three-body abrasive wear, Wear, Vol. 129, No. 1 (1989), pp. 93-103.
  • [223] Yuh-Hwang Tsao, Kin N. Tang.: A Model for Mixed Lubrication. ASLE Transactions 1975, Vol. 18, No. 2, pp. 52-58.
  • [224] Zanoria E.S., Blau P.J.: Effects of machined surface condition on the repeated impact behavior of silicon nitride, Wear, Vol. 218 (1998), pp. 66-77.
  • [225] Zaretsky E.V.: Liquid lubrication in space, Tribology International, Vol. 23, No. 2, 1990, pp.75-93.
  • [226] Zbierski K.: Bezkrzywkowy magnetoelektryczny rozrząd czterosuwowego silnika spalinowego. Monografia, Wydawnictwo Politechniki Łódzkiej. Łódź, listopad 2007.
  • [227] Zbierski K., Siczek K.: The necessity for using of valves made of light materials in camless valve timing of internal combustion engines, Journal of Kones, 2009, Vol. 16, No. 4, pp. 521-530.
  • [228] Zbierski K., Siczek K.: Calculation and veryfication of forces driving outlet valves in magnetoelectrical valve timing of combustion engine, Journal of KONES, 2006, Vol. 13, No. 3, s. 455-462.
  • [229] Zhang R.J., Li S.H., Jin Y.S.: Friction and wear behavior of several functional coatings under lubricated and elevated temperature conditions, Journal of Materials Science Letters, Vol. 22, No. 19, 2003, pp. 1365-1368.
  • [230] Zhong W., Tomanek D.: First-principles theory of atomic-scale friction, Phys. Rev. Lett., 64 (1990), pp. 3054-3057.
  • [231] Zinner K.: Investigations concerning wear of inlet-valve seats in diesel engines, Proc. ASME Oil Gas Power Conference, 1963, ASME paper 63 OGP-1.
  • [232] Zum-Gahr K.H.: Microstructure and wear of materials, Elsevier, Amsterdam, Oxford, New York, Tokyo, 1987.
  • [233] Żabiński T.: Sterowanie systemami mechatronicznymi w czasie rzeczywistym: podejście klasyczne i inteligentne, praca doktorska, Akademia Górniczo-Hutnicza, Kraków, 2005.
  • [234] [http://www.cuorealfista.com/Articoli/tecnica/LaFasaturaVariabile.pdf
  • [235] http://en.wikipedia.org/wiki/Suzuki_M_engine
  • [236] http://marine.suzuki.de/uploads/VS_SIE_DF300_Bro_DE_v2_FINAL.pdf
  • [237] http://en.wikipedia.org/wiki/Mazda_Z_engine
  • [238] http://forum.e46fanatics.com/showthread.phpt=608782
  • [239] http://asia.vtec.net/spfeature/vtecimpl/vtec1.html
  • [240] http://www.b18c5eg.com/VTEC/3stahttp://paultan.org/2006/03/13/2006-hondacivic-18-sohc-i-vtec-engine/gevtec.html
  • [241] [http://www.honda.co.jp/tech/auto/engine/20i-vtec/index.
  • [242] http://paultan.org/2006/03/13/2006-honda-civic-18-sohc-i-vtec-engine
  • [243] http://paultan.org/2007/04/17/honda-files-advanced-vtec-patent
  • [244] http://outlander.kiev.ua/manual/Outlander_2.4_AT_MT/11C.pdf
  • [245] http://www.datsuncr.com/motores-nissan-datsun.html
  • [246] http://www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/vvel.html
  • [247] http://image.automobilemag.com/f/features/news/6697044/0705_c+2007_vs_2008_infiniti_g35_g37+torque.jpg
  • [248] http://www.energieregion.nrw.de/_database/_data/datainfopool/090508-1300-Toyota_Breuer.pdf
  • [249] [http://www.motor-talk.de/blogs/unsere-motoren-koennen-alleineatmen/valvematic-t2432048.html
  • [250] http://r-gt.com/wp-content/uploads/2011/04/2zz-ge.pdf
  • [251] http://www.rheotest.de/download/schmier_pol.pdf
  • [252] http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1805/ch3-6.pdf
  • [253] http://www.precisionenginetech.com/tech-explained/2009/06/02/valve-materialsand-designs-part-2/
  • [254] http://www.precisionenginetech.com/tech-explained/2009/06/02/valve-materialsand-designs-part-1/
  • [255] http://www.sbintl.com/valveseatinserts.html
  • [256] http://paradowscy.pl/pl/produkty_metelli.html
  • [257] http://www.aa1car.com/library/ar696.htm
  • [258] http://www.newen.pl/pdf/valveguides.pdf
  • [259] http://www.sivalves.com/ocantique_vguides.html
  • [260] http://www.hondafitjazz.com/manual/A00/HTML/00/SAA2E00A14680263001MAAT00.HTML#i030
  • [261] http://www.ms-motor-service.com
  • [262] Toyota, The Heart and Soul of Hybrid Synergy Drive, http://www.toyota.com/html/hybridsynergyview/2004/october/heartandsoul.html, 2008.
  • [263] TRW Engine Components Valves, www.ms-motor-service.com
  • [264] www.elf.com.pl/wiedza/rozdzial%2002.pdf
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7056207-a58d-427c-9aa8-220d4d9b7572
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.