Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In underwater communications, reciprocal motion between transmitter and receiver has a significant impact on reception quality. In orthogonal broadband systems that provide high bit rates, this problem becomes more important, especially in the higher frequency range, where the absolute Doppler shift is the greatest. Due to the low propagation speed of acoustic wave underwater, a substantial difference exists between the Doppler shift for lower and upper frequencies of the utilized spectrum. Consequently, a frequency-independent Doppler shift factor is employed. One of the most popular methods for determining the Doppler shift is the use of pilots. The problem of selecting the number and determining the frequency of pilots in such a way as to obtain the lowest possible error rate was identified. Real-world testing was conducted in a multipath propagation environment with relative speeds of up to 1.5 m/s. The effectiveness of Doppler shift determination was evaluated by analyzing the bit error rate. The results of the conducted tests indicate that, based on the achieved error rate, it is sufficient to employ 7 pilots positioned at low frequencies.
Rocznik
Tom
Strony
797--803
Opis fizyczny
Bibliogr. 12 poz., rys., fot.
Twórcy
autor
- Gdańsk University of Technology
autor
- Gdynia Maritime University
autor
- Gdynia Maritime University
autor
- Gdynia Maritime University
autor
- Polish Naval Academy
Bibliografia
- [1] A. M. Bassam, “A pilot-aided doppler estimator for underwater acoustic channels,” in OCEANS 2017 - Aberdeen, 2017, pp. 1-5. [Online]. Available: https://doi.org/10.1109/OCEANSE.2017.8084909.
- [2] Q. K. Nguyen, D. H. Do, and V. D. Nguyen, “Doppler compensation method using carrier frequency pilot for ofdm-based underwater acoustic communication systems,” in 2017 International Conference on Advanced Technologies for Communications (ATC), 2017, pp. 254-259. [Online]. Available: https://doi.org/10.1109/ATC.2017.8167628.
- [3] I. Kochanska, “Reliable ofdm data transmission with pilot tones and error-correction coding in shallow underwater acoustic channel,” Applied Sciences, vol. 10, no. 6, 2020. [Online]. Available: https://doi.org/10.3390/app10062173.
- [4] M. Murad, I. A. Tasadduq, and P. Otero, “Pilot-assisted ofdm for underwater acoustic communication,” Journal of Marine Science and Engineering, vol. 9, no. 12, 2021. [Online]. Available: https://doi.org/10.3390/jmse9121382.
- [5] L. Tian, C. Yifei, and J. Wei, “An algorithm for doppler shift and doppler rate estimation based on pilot symbols,” in 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), 2012, pp. 1626-1629. [Online]. Available: https://doi.org/10.1109/CECNet.2012.6201618.
- [6] C. An and H.-G. Ryu, “Compensation systems and performance comparison of the very high doppler frequency,” in 2020 IEEE Eighth International Conference on Communications and Networking (ComNet), 2020, pp. 1-4. [Online]. Available: https://doi.org/10.1109/ComNet47917.2020.9306104.
- [7] Q. Wei, X. Chen, and Y. F. Zhan, “Exploring implicit pilots for precise estimation of leo satellite downlink doppler frequency,” IEEE Communications Letters, vol. 24, no. 10, pp. 2270-2274, 2020. [Online]. Available: https://doi.org/10.1109/LCOMM.2020.3003791.
- [8] M. Bank, M. Bank, B. Hill, and U. Mahlab, “Ofdma systems, pilot signals and doppler effect,” The IUP Journal of Telecommunications, vol. 2, no. 2, pp. 7-13, 2010. [Online]. Available: https://ssrn.com/abstract=1597684
- [9] J. Mizeraczyk, R. Studanski, A. Zak, and A. Czapiewska, “A method for underwater wireless data transmission in a hydroacoustic channel under nlos conditions,” Sensors, vol. 21, no. 23, 2021. [Online]. Available: https://doi.org/10.3390/s21237825.
- [10] J. H. Schmidt and A. M. Schmidt, “Wake-up receiver for underwater acoustic communication using in shallow water,” Sensors, vol. 23, no. 4, 2023. [Online]. Available: https://doi.org/10.3390/s23042088.
- [11] Schmidt, Jan H. and Schmidt, Aleksander M., “Synchronization system for underwater acoustic communications using in shallow waters,” Vibrations in Physical Systems, vol. 34, no. 1, pp. 2 023 102-1-2 023 102-6, 2023. [Online]. Available: https://doi.org/10.21008/j.0860-6897.2023.1.02.
- [12] A. Czapiewska, A. Luksza, R. Studanski, and A. Zak, “Analysis of impulse responses measured in motion in a towing tank,” Electronics, vol. 11, no. 22, 2022. [Online]. Available: https://doi.org/10.3390/electronics11223819.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f702c5c5-178d-4805-b67f-aad3db84aa5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.