PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Capsule network assisted electrocardiogram classification model for smart healthcare

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Improving the classification accuracy of electrocardiogram (ECG) signals is of great significance for diagnosing heart abnormalities and arrhythmias and preventing cardiovascular diseases (CVDs). The traditional classification method depends on medical experience to select and extract features artificially, lacks the generalization ability to deal with big medical data. The vital feature extraction ability of neural networks has become a hot topic to solve this problem. Based on this, the capsule network is applied to ECG signal classification in this paper. Based on the original network architecture, long short-term memory (LSTM) network and 1D convolutional neural network (CNN) are added as a parallel feature extraction layer to extract the spatial and temporal features of the ECG signal. In addition, the enhanced routing algorithm is proposed, which uses the prior probability of subcapsules as a weighting factor for routing algorithm classification to weaken the influence of noise capsules. The proposed model is superior to the existing state-of-the-art techniques when tested on the MIT-BIH arrhythmia database.
Twórcy
autor
  • School of Computer Science and Engineering, Central South University, Changsha, China
autor
  • School of Computer Science and Engineering, Central South University, Changsha, China
autor
  • School of Computer Science and Engineering, Central South University, Changsha 410083, China
Bibliografia
  • [1] Dai H, Hwang H, Tseng VS. Convolutional neural network based automatic screening tool for cardiovascular diseases using different intervals of ECG signals. Comput Methods Programs Biomed 2021;203. https://doi.org/10.1016/j.cmpb.2021.106035 106035.
  • [2] Yu G, Wu J. Efficacy prediction based on attribute and multi-source data collaborative for auxiliary medical system in developing countries. Neural Comput & Appl 2022;34(7):5497–512. https://doi.org/10.1007/s00521-021-06713-0.
  • [3] Wu J, Chang L, Yu G. Effective data decision-making and transmission system based on mobile health for chronic disease management in the elderly. IEEE Syst J PP 2020;99:1–12.
  • [4] Wu J, Yang S, Gou F, Zhou Z, Xie P, Xu N, et al. Intelligent segmentation medical assistance system for MRI images of osteosarcoma in developing countries. Comput Math Methods Med 2022;2022:1–17.
  • [5] Ullah A, Anwar SM, Bilal M, Mehmood RM. Classification of arrhythmia by using deep learning with 2-d ECG spectral image representation. Remote Sens 2020;12(10):1685. https://doi.org/10.3390/rs12101685.
  • [6] Wu J, Gou F, Tian X, G TR. Disease control and prevention in rare plants based on the dominant population selection method in opportunistic social networks. Comput Intell Neurosci 2022;2022:1–16.
  • [7] Golany T, Lavee G, Yarden ST, Radinsky K. Improving ECG classification using generative adversarial networks. AAAI Press; 2020. p. 13280–5. Available from: https://aaai.org/ojs/index.php/AAAI/article/view/7037.
  • [8] Jia WU, Fangfang GOU, Yanlin TAN. A staging auxiliary diagnosis model for non-small cell lung cancer based the on intelligent medical system. Comput Math Methods Med 2021;2021. https://doi.org/10.1155/2020/6654946. Article ID 6654946, 13 pages.
  • [9] Saadatnejad S, Oveisi M, Hashemi M. Lstm-based ECG classification for continuous monitoring on personal wearable devices. IEEE J Biomed Health Inform 2020;24(2):515–23. https://doi.org/10.1109/JBHI.2019.2911367.
  • [10] Hua J, Xu Y, Tang J, Liu J, Zhang J. ECG heartbeat classification in compressive domain for wearable devices. J Syst Archit 2020;104. https://doi.org/10.1016/j.sysarc.2019.101687 101687.
  • [11] Chang Liu, Jia Wu, Moustafa Nour, Bashir Ali Kashif, Keping Yu. AI-driven synthetic biology for non-small cell lung cancer drug effectiveness-cost analysis in intelligent assisted medical systems. IEEE J Biomed Health Inform 2021:1–12. https://doi.org/10.1109/JBHI.2021.3133455.
  • [12] Teijeiro T, Félix P, Presedo J, Castro D. Heartbeat classification using abstract features from the abductive interpretation of the ECG. IEEE J Biomed Health Inform 2018;22(2):409–20. https://doi.org/10.1109/JBHI.2016.2631247.
  • [13] Andreão RV, Dorizzi B, Boudy J. ECG signal analysis through hidden markov models. IEEE Trans Biomed Eng 2006;53(8):1541–9. https://doi.org/10.1109/TBME.2006.877103.
  • [14] Rahhal MMA, Bazi Y, Alhichri HS, Alajlan N, Melgani F, Yager RR. Deep learning approach for active classification of electrocardiogram signals. Inf Sci 2016;345:340–54. https://doi.org/10.1016/j.ins.2016.01.082.
  • [15] de Chazal P, O’Dwyer M, Reilly RB. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 2004;51(7):1196–206. https://doi.org/10.1109/TBME.2004.827359.
  • [16] He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. IEEE Comput Soc 2015:1026–34. https://doi.org/10.1109/ICCV.2015.123.
  • [17] Graves A, Mohamed A, Hinton GE. Speech recognition with deep recurrent neural networks. IEEE 2013:6645–9. https://doi.org/10.1109/ICASSP.2013.6638947.
  • [18] Kiranyaz S, Ince T, Gabbouj M. Real-time patient-specific ECG classification by 1-d convolutional neural networks. IEEE Trans Biomed Eng 2016;63(3):664–75. https://doi.org/10.1109/TBME.2015.2468589.
  • [19] Li Y, Pang Y,Wang J, Li X. Patient-specific ECG classification by deeper CNN from generic to dedicated. Neurocomputing 2018;314:336–46. https://doi.org/10.1016/j.neucom.2018.06.068.
  • [20] Xie P, Wang G, Zhang C, Chen M, Yang H, Lv T, et al. Bidirectional recurrent neural network and convolutional neural network (bircnn) for ECG beat classification. IEEE 2018:2555–8. https://doi.org/10.1109/EMBC.2018.8512752.
  • [21] Tan JH, Hagiwara Y, Pang W, Lim I, Oh SL, Adam M, et al. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Comput Biol Medicine 2018;94:19–26. https://doi.org/10.1016/j.compbiomed.2017.12.023/13.
  • [22] Li P, Wang Y, He J, Wang L, Tian Y, Zhou T, et al. High-performance personalized heartbeat classification model for long-term ECG signal. IEEE Trans Biomed Eng 2017;64(1):78–86. https://doi.org/10.1109/TBME.2016.2539421.
  • [23] S. Sabour, N. Frosst, G. E. Hinton, Dynamic routing between capsules, 2017, pp. 3856–3866. https://proceedings.neurips.cc/paper/2017/hash/2cad8fa47bbef282badbb8de5374b894-Abstract.html.
  • [24] Li X, Zhang J, Chen W, Chen Y, Zhang C, Xiang W, et al. Interpatient automated arrhythmia classification: A new approach of weight capsule and sequence-to-sequence combination. Comput Methods Programs Biomed 2022;214. Available from: https://www.sciencedirect.com/science/article/pii/S01692 106533.
  • [25] H. N. Monday, J. P. Li, G. U. Nneji, E. C. James, Y. B. Leta, S. Nahar, A. U. Haq, Shared weighted continuous wavelet capsule network for electrocardiogram biometric identification, 2021, pp. 419–425. https://ieeexplore.ieee.org/document/9674078.
  • [26] I. E. Boujnouni, A. Tali, K. Bentaleb, Capsule network based on scalograms of electrocardiogram for myocardial infarction classification, 2020, pp. 1–5. https://ieeexplore.ieee.org/document/9204138.
  • [27] Butun E, Yildirim O, Talo M, Tan RS, Rajendra Acharya U. 1dcadcapsnet: One dimensional deep capsule networks for coronary artery disease detection using ECG signals. Physica Med 2020;70:39–48. Available from: https://www.sciencedirect.com/science/article/pii/S1120179720300077.
  • [28] AAMI-recommended practice: Testing and Reporting Performance Results of V entricular Arrhythmia Detection Algorithms. Arlington,V A: Association for the Advancement of Medical Instrumentation, 1987. https://www.aami.org/detail-pages/full-committee-list-detail/ec—ecg-committee.
  • [29] R. G. Mark, G. B. Moody, MIT-BIH arrhythmia database [EB/OL] (1997). http://ecg.mit.edu/dbinfo.html.
  • [30] Adnane M, Belouchrani A. Heartbeats classification using QRS and Twaves autoregressive features and RR interval features. Expert Systems 2017;34(6):e12219.
  • [31] Sultana N, Kamatham Y. Msvm-based classifier for cardiac arrhythmia detection. IEEE 2016:1314–8. https://doi.org/10.1109/ICACCI.2016.7732229.
  • [32] Chen KJ, Chien P. A fast ECG diagnosis using frequency-based compressive neural network. IEEE 2017:1–2. https://doi.org/10.1109/GCCE.2017.8229377.
  • [33] Kumar M, Pachori RB, Rajendra Acharya U. Automated diagnosis of atrial fibrillation ecg signals using entropy features extracted from flexible analytic wavelet transform. Biocyber Biomed Eng 2018;38(3):564–73.
  • [34] Neela T, Namburu S. ECG signal classification using capsule neural networks. IET Netw 2021;10(3):103–9. https://doi.org/10.1049/ntw2.12018.
  • [35] H. Jayasekara V. Jayasundara J. Rajasegaran S. Jayasekara S. Seneviratne R. Rodrigo Timecaps: Capturing time series data with capsule networks ArXiv abs/1911.11800. https://arxiv.org/abs/1911.11800.
  • [36] Jiang W, Kong SG. Block-based neural networks for personalized ECG signal classification. IEEE Trans Neural Networks 2007;18(6):1750–61. https://doi.org/10.1109/TNN.2007.900239.
  • [37] Ince T, Kiranyaz S, Gabbouj M. A generic and robust system for automated patient-specific classification of ECG signals. IEEE Trans Biomed Eng 2009;56(5):1415–26. https://doi.org/10.1109/TBME.2009. 2013934.
  • [38] Hu YH, Palreddy S, Tompkins WJ. A patient-adaptable ECG beat classifier using a mixture of experts approach. IEEE Trans Biomed Eng 1997;44(9). Available from: https://ieeexplore.ieee.org/document/623058.
  • [39] P. Singh, G. Pradhan, S. S., Denoising of ecg signal by nonlocal estimation of approximation coefficients in dwt, Biocybernetics and Biomedical Engineering 37 (3) (2017) 599–610. https://www.sciencedirect.com/science/article/pii/S0208521617301122.
  • [40] Kumar S, Panigrahy D, Sahu P. Denoising of electrocardiogram (ecg) signal by using empirical mode decomposition (emd) with non-local mean (nlm) technique. Biocyber Biomed Eng 2018;38(2):297–312. Available from: https://www.sciencedirect.com/science/article/pii/S0208521617303017.
  • [41] Banerjee S, Gupta R, Mitra M. Delineation of ecg characteristic features using multiresolution waveletanalysis method. Measurement 2012;45(3):474–87. Available from: https://www.sciencedirect.com/science/article/pii/S026322411100371X.
  • [42] Wu J, Li F, Chen Z, Xiang X, Pu Y. Patient-specific ECG classification with integrated long short-term memory and convolutional neural networks. IEICE Trans Inf Syst 2020;103-D(5):1153–63. https://doi.org/10.1587/transinf.2019EDP7282.
  • [43] The source codes and other related algorithms. https://github.com/jiayoying/ECG_CAP.
  • [44] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2015. http://arxiv. org/abs/1409.1556.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7025aa8-667f-4b7e-8f2a-0eae36fd094b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.