Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The employment of green synthesized nanomaterials for water pollution prevention is increasing nowadays. Herein, Mn-doped ZnO nanoparticles were synthesized using Peganum Harmala seed extract and subsequently used for crystal violet (CV) dye removal from aqueous solutions. The first part of the study describes the preparation of the adsorbent (Mn-ZnO NPs) using a simple coprecipitation method. The surface properties of the material were characterized by Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The second part investigates the adsorption of CV dye onto the surface of the prepared Mn-ZnO NPs. Additionally, the isotherm, kinetics, and thermodynamics of the adsorption process were studied in detail. Batch adsorption analysis was carried out by evaluating different parameters, such as the amount of the adsorbent (0.01g to 0.04 g), CV concentration (20 to 80 mg/L), adsorption time (30 to 120 min), and temperature (35 to 65 ⁰C). The maximum CV dye adsorption capacity of the Mn-ZnO NPs was 45.60 mg/g. The thermodynamic study revealed the spontaneous, exothermic, and feasible nature of the adsorption process, primarily driven by physical forces. Kinetic and isotherm analyses indicated that the adsorption of the dye best fit the Freundlich isotherm and pseudo-second-order models, respectively. Mn-doped ZnO is considered an effective adsorbent for CV, benefiting from its rapid and easy preparation, non-toxic nature, and 94% adsorption efficiency. The material holds potential for future applications in the removal of organic dyes from wastewater.
Czasopismo
Rocznik
Tom
Strony
43--53
Opis fizyczny
Bibliogr. 49 poz., rys., wykr.
Twórcy
autor
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
autor
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sana'a University, Sana'a, Yemen
Bibliografia
- 1. Aboud, A. A., Bukhari, Z. & Al-Ahmadi, A. N. (2023). Enhancement of UV detection properties of ZnO thin films via Ni doping. Physica Scripta, 98(6), 065938. DOI:10.1088/1402-4896/acd284
- 2. Aboud, A. A., Shaban, M. & Revaprasadu, N. (2019). Effect of Cu, Ni and Pb doping on the photo-electrochemical activity of ZnO thin films. RSC Advances, 9(14), pp. 7729-7736. DOI:10.1039/C8RA10599E
- 3. Ahmadi, S. & Ganjidoust, H. (2021). Using banana peel waste to synthesize BPAC/ZnO nanocomposite for photocatalytic degradation of Acid Blue 25: Influential parameters, mineralization, biodegradability studies. Journal of Environmental Chemical Engineering, 9(5), 106010. DOI:10.1016/J.JECE.2021.106010
- 4. Ahmed, S. A. (2017). Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results in Physics, 7, pp. 604-610. DOI:10.1016/j.rinp.2017.01.018
- 5. Aigbe, U. O. & Osibote, O. A. (2024). Green synthesis of metal oxide nanoparticles, and their various applications. Journal of Hazardous Materials Advances, 13, 100401. DOI:10.1016/J.HAZADV.2024.100401
- 6. Al-Kahlout, A. (2012). ZnO nanoparticles and porous coatings for dye-sensitized solar cell application: Photoelectrochemical characterization. Thin Solid Films, 520(6), pp, 1814-1820. DOI:10.1016/j.tsf.2011.08.095
- 7. Alsaiari, R. (2022). Removal of cobalt (II) ions from aqueous solution by Peganum Harmala seeds. Indian Journal of Chemical Technology (Vol. 29).
- 8. Alsaiari, R., Alqadri, F., Shedaiwa, I. & Alsaiari, M. (2021). Peganum Harmala plant as an adsorbent for the removal of Copper(II) ions from water. In Indian Journal of Chemical Technology (Vol. 28).
- 9. Alsaiari, R., Shedaiwa, I., Al-Qadri, F. A., Musa, E. M., Alqahtani, H., Alkorbi, F., Alsaiari, N. A. & Mohamed, M. M. (2024). Peganum Harmala L. plant as green non-toxic adsorbent for iron removal from water. Archives of Environmental Protection, 50(1), pp. 3-12. DOI:10.24425/aep.2024.149894
- 10. Aregawi, B. H. & Mengistie, A. A. (2013). Removal of Ni(II) from aqueous solution using leaf, bark and seed of moringa stenopetala adsorbents. Bulletin of the Chemical Society of Ethiopia, 27(1), pp. 35-47. DOI:10.4314/bcse.v27i1.4
- 11. Bououdina, M., Omri, K., El-Hilo, M., El Amiri, A., Lemine, O. M., Alyamani, A., Hlil, E. K., Lassri, H. & El Mir, L. (2014). Structural and magnetic properties of Mn-doped ZnO nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 56, pp. 107-112. DOI:10.1016/j.physe.2013.08.024
- 12. Castañeda, D., Muñoz H., G. & Caldiño, U. (2005). Local structure determination of Mn2+ in CaCl 2:Mn2+ by optical spectroscopy. Optical Materials, 27(8), pp. 1456-1460. DOI:10.1016/j.optmat.2004.10.009
- 13. Chen, L., Cui, Y., Xiong, Z., Zhou, M. & Gao, Y. (2019). Chemical functionalization of the ZnO monolayer: Structural and electronic properties. RSC Advances, 9(38), pp. 21831-21843. DOI:10.1039/c9ra03484f
- 14. Darroudi, M., Sabouri, Z., Kazemi Oskuee, R., Khorsand Zak, A., Kargar, H. & Hamid, M. H. N. A. (2013). Sol-gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth. Ceramics International, 39(8), pp. 9195-9199. DOI:10.1016/j.ceramint.2013.05.021
- 15. Elsayed, A. E., Osman, D. I., Attia, S. K., Ahmed, H. M., Shoukry, E. M., Mostafa, Y. M. & Taman, A. R. (2020). A study on the removal characteristics of organic and inorganic pollutants from wastewater by low cost biosorbent. Egyptian Journal of Chemistry, 63(4), pp. 1429-1442. DOI:10.21608/ejchem.2019.15710.1950
- 16. Fahmy, S. A., Fawzy, I. M., Saleh, B. M., Issa, M. Y., Bakowsky, U. & Azzazy, H. M. E. S. (2021). Green synthesis of platinum and palladium nanoparticles using Peganum harmala L. Seed alkaloids: Biological and computational studies. Nanomaterials, 11(4). DOI:10.3390/nano11040965
- 17. Fekri, R., Mirbagheri, S. A., Fataei, E., Ebrahimzadeh-Rajaei, G. & Taghavi, L. (2022). Green synthesis of CuO nanoparticles using Peganum harmala extract for photocatalytic and sonocatalytic degradation of reactive dye and organic compounds. Main Group Chemistry, 21(4), pp. 975-996. DOI:10.3233/MGC-220045
- 18. Freundlich, H. M. F. (1906). Over the adsorption in solution. J. Phys. Chem, 57, pp. 385-471.
- 19. Ghasemi, M., Ghasemi, N., Zahedi, G., Alwi, S. R. W., Goodarzi, M. & Javadian, H. (2014). Kinetic and equilibrium study of Ni(II) sorption from aqueous solutions onto Peganum harmala-L. International Journal of Environmental Science and Technology, 11(7), pp. 1835-1844. DOI:10.1007/s13762-014-0617-9
- 20. Gul, S., Afsar, S., Gul, H. & Ali, B. (2023). Removal of crystal violet dye from wastewater using low-cost biosorbent Trifolium repens stem powder. Journal of the Iranian Chemical Society, 20(11), pp. 2781-2792. DOI:10.1007/s13738-023-02875-x
- 21. Homagai, P. L., Poudel, R., Poudel, S. & Bhattarai, A. (2022). Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon, 8(4). DOI:10.1016/j.heliyon.2022.e09261
- 22. Jadoun, S., Yáñez, J., Aepuru, R., Sathish, M., Jangid, N. K. & Chinnam, S. (2024). Recent advancements in sustainable synthesis of zinc oxide nanoparticles using various plant extracts for environmental remediation. Environmental Science and Pollution Research, 31(13), pp. 19123-19147. DOI:10.1007/s11356-024-32357-3
- 23. Kasbaji, M., Ibrahim, I., Mennani, M., abdelatty abuelalla, O., fekry, S. S., Mohamed, M. M., Salama, T. M., Moneam, I. A., Mbarki, M., Moubarik, A. & Oubenali, M. (2023). Future trends in dye removal by metal oxides and their Nano/Composites: A comprehensive review. Inorganic Chemistry Communications, 158, 111546. DOI:DOI:10.1016/j.inoche.2023.111546
- 24. Khan, Z. R., Khan, M. S., Zulfequar, M. & Shahid Khan, M. (2011). Optical and Structural Properties of ZnO Thin Films Fabricated by Sol-Gel Method. Materials Sciences and Applications, 02(05), pp. 340-345. DOI:10.4236/msa.2011.25044
- 25. Kumar, P. & Kirthika, K. (2010). Kinetics and equilibrium studies of Zn2+ ions removal from aqueous solutions by use of natural waste. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9(1), 264.
- 26. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11), pp. 2221-2295. DOI:10.1021/ja02268a002
- 27. Lemecho, B. A., Sabir, F. K., Andoshe, D. M., Gultom, N. S., Kuo, D. H., Chen, X., Mulugeta, E., Desissa, T. D. & Zelekew, O. A. (2022). Biogenic Synthesis of Cu-Doped ZnO Photocatalyst for the Removal of Organic Dye. Bioinorganic Chemistry and Applications. DOI:10.1155/2022/8081494
- 28. Liu, Y. X., Liu, Y. C., Shen, D. Z., Zhong, G. Z., Fan, X. W., Kong, X. G., Mu, R. & Henderson, D. O. (2002). Preferred orientation of ZnO nanoparticles formed by post-thermal annealing zinc implanted silica. Solid State Communications, 121(9-10), pp. 531-536. DOI:10.1016/S0038-1098(02)00006-6
- 29. Mandal, S. K., Das, A. K., Nath, T. K. & Karmakar, D. (2006). Temperature dependence of solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO nanoparticles. Applied Physics Letters, 89(14). DOI:10.1063/1.2360176
- 30. Mehar, S., Khoso, S., Qin, W., Anam, I., Iqbal, A. & Iqbal, K. (2019). Green Synthesis of Zincoxide Nanoparticles from Peganum harmala, and its biological potential against bacteria. Frontiers in Nanoscience and Nanotechnology, 6(1). DOI:10.15761/fnn.1000188
- 31. Mote, D.V., Dargad, J.S. & Dole, B.N. (2013). Effect of Mn Doping Concentration on Structural, Morphological and Optical Studies of ZnO Nano-particles. Nanoscience and Nanoengineering, 1(2), pp. 116-122. DOI:10.13189/nn.2013.010204
- 32. Owoeye, S. S., Toludare, T. S., Isinkaye, O. E. & Kingsley, U. (2019). Influence of waste glasses on the physico-mechanical behavior of porcelain ceramics. Boletin de la Sociedad Espanola de Ceramica y Vidrio, 58(2), pp. 77-84. DOI:10.1016/j.bsecv.2018.07.002
- 33. Paksamut, J. & Boonsong, P. (2018). Removal of Copper(II) Ions in Aqueous Solutions Using Tannin-Rich Plants as Natural Bio-Adsorbents. IOP Conference Series: Materials Science and Engineering, 317(1). DOI:10.1088/1757-899X/317/1/012058
- 34. Paraguay, F., Estrada, W., Acosta, D. R., Andrade, E. & Miki-Yoshida, M. (1999). Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films, 350, pp. 192-202.
- 35. Park, D., Lim, S. R., Yun, Y. S. & Park, J. M. (2008). Development of a new Cr(VI)-biosorbent from agricultural biowaste. Bioresource Technology, 99(18), pp. 8810-8818. DOI:10.1016/J.BIORTECH.2008.04.042
- 36. Seetawan, U., Jugsujinda, S., Seetawan, T., Ratchasin, A., Euvananont, C., Junin, C., Thanachayanont, C. & Chainaronk, P. (2011). Effect of Calcinations Temperature on Crystallography and Nanoparticles in ZnO Disk. Materials Sciences and Applications, 02(09), pp. 1302-1306. DOI:10.4236/msa.2011.29176
- 37. Shaba, E. Y., Jacob, J. O., Tijani, J. O. & Suleiman, M. A. T. (2021). A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Applied Water Science. 11, 48. DOI:10.1007/s13201-021-01370-z
- 38. Sharaf, G. & Hassan, H. (2014). Removal of copper ions from aqueous solution using silica derived from rice straw: Comparison with activated charcoal. International Journal of Environmental Science and Technology, 11(6), pp. 1581-1590. DOI:10.1007/s13762-013-0343-8
- 39. Singh, B., Shrivastava, S. B. & Ganesan, V. (2016). Effects of Mn Doping on Zinc Oxide Films Prepared by Spray Pyrolysis Technique. International Journal of Nanoscience, 15(3), 1650024-1-8. DOI:10.1142/S0219581X16500241
- 40. Solmaz, A., Turna, T. & Baran, A. (2024). Ecofriendly synthesis of selenium nanoparticles using agricultural Citrus fortunella waste and decolourization of crystal violet from aqueous solution. The Canadian Journal of Chemical Engineering, 102(6), pp. 2051-2067. DOI:10.1002/cjce.25179
- 41. Sriram, S., Lalithambika, K.C. & Thayumanavan, A. (2017). Experimental and theoretical investigations of photocatalytic activity of Cu doped ZnO nanoparticles. Optik, 139, pp. 299-308. DOI:10.1016/J.IJLEO.2017.04.013
- 42. Taha, A. A., Ahmed, A. M., Abdel Rahman, H. H., Abouzeid, F. M. & Abdel Maksoud, M. O. (2017). Removal of nickel ions by adsorption on nano-bentonite: Equilibrium, kinetics, and thermodynamics. Journal of Dispersion Science and Technology, 38(5), pp. 757-767. DOI:10.1080/01932691.2016.1194211
- 43. Theyvaraju, D. & Muthukumaran, S. (2015). Preparation, structural, photoluminescence and magnetic studies of Cu doped ZnO nanoparticles co-doped with Ni by sol-gel method. Physica E: Low-Dimensional Systems and Nanostructures, 74, pp. 93-100. DOI:10.1016/J.PHYSE.2015.06.012
- 44. Trari, M., Töpfer, J., Dordor, P., Grenier, J. C., Pouchard, M. & Doumerc, J. P. (2005). Preparation and physical properties of the solid solutions Cu 1+xMn1-xO2 (0≤x≤0.2). Journal of Solid State Chemistry, 178(9), pp. 2751-2758. DOI:10.1016/j.jssc.2005.06.009
- 45. Ullah, I., Rauf, A., Khalil, A. A., Luqman, M., Islam, M. R., Hemeg, H. A., Ahmad, Z., Al-Awthan, Y. S., Bahattab, O. & Quradha, M. M. (2024). Peganum harmala L. extract-based Gold (Au) and Silver (Ag) nanoparticles (NPs): Green synthesis, characterization, and assessment of antibacterial and antifungal properties. Food Science and Nutrition. 12(6), pp.4459-4472. DOI:10.1002/fsn3.4112
- 46. Yang, Z., Ye, Z., Xu, Z. & Zhao, B. (2009). Effect of the morphology on the optical properties of ZnO nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 42(2), pp. 116-119. DOI:10.1016/j.physe.2009.09.010
- 47. Yildirimcan, S., Ocakoglu, K., Erat, S., Emen, F. M., Repp, S. & Erdem, E. (2016). The effect of growing time and Mn concentration on the defect structure of ZnO nanocrystals: X-ray diffraction, infrared and EPR spectroscopy. RSC Advances, 6(45), pp. 39511-39521. DOI:10.1039/c6ra04071c
- 48. Zafar, M. N., Dar, Q., Nawaz, F., Zafar, M. N., Iqbal, M. & Nazar, M. F. (2019). Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. Journal of Materials Research and Technology, 8(1), pp. 713-725. DOI:10.1016/j.jmrt.2018.06.002
- 49. Zhu, Z., Zhao, S. & Wang, C. (2022). Antibacterial, Antifungal, Antiviral, and Antiparasitic Activities of Peganum harmala and Its Ingredients: A Review. MDPI Molecules, 27(13). DOI:10.3390/molecules27134161
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f7022636-1551-4e69-8fe7-4d4570d3110c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.