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Abstract. We consider a sequence of projects of 

independent activities; each project composed of activities 

available for realization at the same time. It is assumed 

that the activities are continuous dynamical systems 

whose dynamics depend continuously on the allotted 

amounts of the resource, and the initial and terminal states 

are fixed. The problem is to allocate a renewable, 

continuously divisible resource (e.g., power, fuel flow, 

money per time unit, approximate manpower) to the 

activities in order to minimize the performance time of 

the sequence of projects under the assumption that the 

allowable level of the total usage of the resource is 

constant. Although the solution to this problem is known 

in the literature, nevertheless there is a lack of effective 

computational algorithms for the time-optimal resource 

allocation, especially in the case of really large projects. 

In this paper a decentralized two-level control scheme 

using the time-decomposition is proposed to find the 

time-optimal resource allocation in a sequence of projects. 

The price mechanism is applied to coordinate the lower 

level tasks of the optimal resource allocation in the 

successive time intervals determined by the moments at 

which the successive projects are available for realization. 

Necessary and sufficient conditions to ensure the 

determination of the optimal resource allocation 

according to the method proposed are stated. The 

problems connected with the numerical realization of the 

scheme are discussed and the resulting computer 

algorithm is outlined.  

Key words: project of activities, resource allocation, time-

optimal control, dynamical system, decentralized control 

 

INTRODUCTION 

 

 The concept of the control of a project of activities 

was introduced by Burkov [4] and Lerner and Tejman 

[20] as a special approach to resource allocation in PERT 

networks. Its distinctive feature is that the activities are 

continuous dynamical systems relating at any time the 

performance speeds of the activities to the allotted 

amounts of a resource, and that the initial and terminal 

states are fixed. By optimal control of a project of 

activities we shall mean an assignment of constrained 

resources to activities such that to minimize  

a performance index of the whole project, e.g. time or 

cost. The approach naturally employs the fact that every 

activity is characterized by an amount of work to be 

performed with controllable rate which depends on the 

amount of resource. Two resource categories can be 

distinguished from the viewpoint of resource divisibility: 

discrete (i.e., discretely divisible) and continuous (i.e., 

continuously divisible) ones [2,9,14]. Examples of 

discrete resources include: machines, tools, workers. The 

most typical continuous resources are: power, energy, 

liquids and money.  

 There exist an intensive and ever-increasing 

literature dealing with various aspects of resource 

allocation control and scheduling of multi-project of 

activities [1,2,9,13-15,25-28] and its applications in 

different areas (see, for example, [2,16,21,24]). During  

a last four decades a variety of different algorithms for 

resource allocation and project scheduling have been 

proposed. The results were obtained for general cases, 

where all the models relating performance speeds of 

activities to resource amounts were arbitrary continuous 

increasing functions [4,9,11,12,14,26], as well as for 

multi-projects of activities described by specific concave 

and convex functions [9,11,12,26,27], and even for  

a special case of simple linear with respect to the resource 

amount models [10,15,18,19]. The project duration 

optimization [9,11,12,19,26], minimizing inventory, 

backlog and production related costs over a production 

horizon [17], minimizing maximum lateness or just-in-

time [13] criteria were used as the objective functions. 

Optimal resource allocation policies were proposed both 

for singly [9,11,12] and for doubly constrained resources 

[9,18]. The most typical renewable continuous resource, 

which is power, is also, most often, doubly constrained, 

since its consumption, i.e. energy, is also limited. For the 

survey of the problems of resource allocation among 

activieties which can be processed using resources of 

various categories and types see [1,2,28]. Further 

explanations, theory and examples on control of project of 

activities can be fund in [21,25], see also [9,11,12]. 

 The paper deals with a class of time-optimal 

resource allocation problems in which the total usage of 

renewable and continuously divisible resource is 

constrained at every time of the project performance.  
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A sequence of projects is considered, each project 

composed of activities which are available for realization 

at the same time. This assumption, essential for the idea 

of the time-decomposition applied, seems to be a realistic 

assumption in most real processes. No specific 

assumptions concerning the models of activities, like 

linearity, convexity or concavity are made here. The 

problem is to find an admissible control minimizing the 

performance time of the sequence of projects under the 

assumption that the allowable level of the total usage of 

the resource is constant during the projects duration. This 

problem has been solved in [12], where necessary and 

sufficient optimality conditions are stated in terms of the 

performance time and the existence of the optimal control 

is proved. However, the solution concept proposed in [12] 

leads to the reduction of the primary dynamic 

optimization problem to some static programming task, 

the computational complexity of this task grows, in 

general, faster than the dimension of the problem, i.e., the 

number of activities and the number of the moments at 

which the successive projects are available for realization. 

The paper discusses hierarchical decentralized method for 

solving this class of optimal resource allocation problems. 

 
TIME-OPTIMAL CONTROL OF A SEQUENCE  

OF PROJECTS 

 
 We consider a sequence of   projects of 

independent activities (this means that no precedence 

relations exists among them), each project composed of 

activities available for realization at the same time, 

described by the equations:  

 

  
                       

                                 
                 , 

  (1) 

 

where:        and        are, respectively, the state of the 

 -th activity in the  -th project and the amount of resource 

allotted to this activity at the time  . Here    is the 

specified, fixed time at which the  -th project is available 

for realization,        , where     , and    is the 

number of activities in the  -th project,        . We 

also assume that for any           and         the 

functions           describing the speed (i.e., the rate 

of activity performance): 

 

                           
 

are continuous, increasing and such that         ,    is 

the set of nonnegative real numbers. The assumption 

means that the greater the assigned resource        is, the 

higher is the speed        of execution of the activity.  

 We say that the activity       is completed if its 

state has attained a given terminal state      . We also 

assume that the amount of a renewable and continously 

divisible resource, e.g. power or budget available per time 

unit for management, is constant and equal to   for any 

time    . By the performance time   of a sequence of 

projects we mean the time at which all the activities are 

completed, i.e.:  

 

                                       . 
 

We introduce, for convenience, the following vector 

notation: 

 

             
 ,          

    
   , 

             
 ,          

    
   . 

 
 The vectors    and   of speeds of the  -th project 

activities and all activities, respectively, as well as the 

vectors of final states    and   are defined by analogy. 

The vector-functions        and      are defined as 

follows: 

 

                             
 
, 

             
        

   . 

 

 Define for the successive time intervals determined 

by the times   ,        , the sets od admissible values 

of resource allocation: 

 

         
                  

  
   

 
       , 

 

where: 

 

         
 
     

 

is the number of all activities. The sets of feasible 

performing speeds of operations within the  -th time 

interval will be denoted by: 

 

         
               . 

 

Note, that    and    are compact subsets of   . The 

following condition is satisfied: 

 

                                    , (2) 

 

here    is zero vector of dimension  . The resource 

allocation (control): 

 

        
       

      , 

 

where: 

 

                      
  

 

and the functions: 

 

             for                 , 

 

is said to be admissible for the sequence of projects, if the 

following conditions are satisfied: 

 

 (i)         for          ,         ,  

                                where       , 

 (ii)      is piecewise continuous function, 

 (iii)           
 

 
. 
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 The problem is to find an admissible control      
for which all the projects are completed as soon as 

possible, i.e. a control minimizing the performance time 

   of the sequence of projects. 

 

OPTIMALITY CONDITIONS 

 

 In the paper [12] a solution to the above problem is 

presented, based on the notion of the set of reachable 

states. This approach leads to the reduction of the primary 

dynamic optimization problem to the static programming 

task. The following result follows immediately from [12; 

Theorem 2]. 

Theorem 1.    is the minimum performance time if and 

only if    and           are the solutions of the 

following optimization task:  

 

       (3) 

 

subject to:  

 

     
         

           
 , 

               ,        , (4) 

 

where:          is the convex hull of    (the smallest 

convex set containing   , i.e., the set of all convex 

combinations of points in   ) and            for 

          . 

 The problem (3), (4) is static convex programming 

task. However, the above task can be solved by using 

standard convex numerical optimization techniques [3], 

the computational complexity of this problem grows, in 

general, faster than the dimension of the problem, i.e., the 

number of activities and the number of the time moments 

   at which the successive projects are available for 

realization. Thus, in order to reduce the computational 

and storage requirements the following two-level scheme 

is proposed. Taking into account the successive time-

intervals structure of both the original dynamic optimal 

resource allocation problem [12] as well as the static 

optimization task (3), (4), the time-decomposition 

approach is applied. 

 
DECENTRALIZED TWO-LEVEL SCHEME FOR 

RESOURCE ALLOCATION 

 
 Note first, that for any positive constant   the 

optimization problem (3), (4) is equivalent to the 

minimization of the modified strictly convex index: 

 

           (5) 

 

subject to the constraints (4). By introducing a vector of 

prices     , we can define the Lagrangian for the 

optimization task (5), (4):  

 

                              
     

                        
           

  , (6) 

 

where:   is some positive constant and       denotes the 

inner product. Notice that                is continous 

with respect to all arguments and can be expressed as: 

 

                       
       

     

                                        
          , (7) 

 

where for           the local Lagrangians are 

equal:  
 

     
            , (8) 

 

while for the last time interval we have: 

 

       
                     

  . (9) 

 

Consider the following two-level scheme. 

Infimal Problem (IP). Given     , for           

find the performance speed vectors        such that:  

 

      
                           

    , (10) 

 

and the pair                such that:  

 

            
                              

    . 

 (11) 
 

 By virtue of the compactness of the sets          
and the continouity of the Lagrangians     

     with 

respect to   , the solutions of (10) exist for any     , 

         , on the basis of the well-known 

Weierstrass’s theorem which asserts the existence of 

continuous function extrema on compact sets [29; 

Theorem 7.1]. Compactness of          together with 

the strict conxexity of the continous local Lagrangian 

      
     with respect to   implies the existence of 

(11) solution. If the solution of (10) with respect to    is 

not unique, take any: 

 

             , 
 

       being the set of speed vectors minimizing 

    
     on         ,          . Similarly, if the 

solution to (11) is not unique take any               
minimizing       

    . For given        locally optimal 

      is unique due to       
     strict convexity with 

respect to   – for details see the next section.  

Coordination Problem (CP). Find       such that:  

 

                    , (12) 

 
where the dual function       is defined as follows: 

 

                                 , (13) 

 

and take            ,         as the vectors of the 

optimal performance speeds of the activities in the 

successive time intervals.  
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PROPERTIES OF IP AND CP  

 
 Let us consider first the IP tasks (10). Since    

        , taking into account (8) we see that for any 

          the solutions of (10) are such that:

                    
             . (19) 

 

Taking into account the properties of the square function 

(17) of (variable)        in (16), as easily check that, the 

solution        of (16) for      is given by: 
 

               

              

                                                                               

                                                                      

                                    

 , 

             

 

      
            

           
        . (14) 

 

Consider an arbitrary     . It is obvious that for any 

positive constant   we have: 

 

     
               

           
             

       . 

 
Since the compact set              is an absorbing 

set for the subspace   
  , taking into account property (2) 

it is easily seen that the solutions of (10) are such that: 

 

                   , 
 

where              is boundary of the set         . 
Here: 

 

           
 
     

 

is the number of operations accessible for realization in 

the  -th time interval,     . 

 Let us consider now the last IP task (11). According 

to the parametric approach of successive optimization [7] 

applied to (11) the following equivalence holds: 

 

                        
         

                            
     . (15) 

 
The unique solution of the internal optimization task of 

the right-hand side of (15) is given by: 

 

   
 

  
          . 

 

Whence, the external task of the right-hand side of (15) 

takes the form: 

 

                     
    , (16) 

 

with the function      
     defined by: 

 

      
      

 

  
           

                         
 

  
        

   
 

  
. (17) 

 Let      and                 and        
         be such that: 

 

                    
             ,  (18)

 

where:         . Note, that since for any      at 

least one of inner products            and            
differs from zero, i.e.: 

 

                       , 

 

the inequality related to        in the curly brackets in the 

above formula is equivalent to       , where: 

 

                          . 
 

Thus        solving (16) for      can be rewritten in 

compact form as follows: 

 

         

                                         

                                

                                           

 . (20) 

 

Thus, the optimum: 

 

            
                  

              
        , 
 (21) 

 

can be rewritten in the compact form as: 

 

            
         

 

  
               

 
 

  
         

      
 

  
,     (22) 

 

with        given by (20). Since        and        are 

boundary points of the set         , we also have: 

 

                   . 
 

 Let        . It is obvious, due to affine with 

respect to   form of the inner product in (18) and (19), 

that for any positive constant   we have: 

 

               and               . 
 

Whence, if       , then for any   such that   
      , thus in particular for any    , we have 

              , and for any         , we have 

              . When       , for any   such that 

        , we have                and for any   

such that         , we have               . In both 

cases for          each of        and        can be 

chosen. When       , i.e., both        and        are 
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locally optimal for  , for    we have                
for    , and                for    . The above 

results in: 

 

        

 
 
 
 
 

 
 
 
 
                                   

                                            

                                  

                                            

                             

                                       

                                       

 . 

 (23) 
 

Then, we get the following result.  

Proposition 1. Let      and     . The solutions of 

IP tasks are such that: 

(i)                     for        , 

(ii)                for any    ,          , 

(iii)         is given by (23) for any    . 

 From (7), (10), (11) and (13) as a straightforward 

conclusion we see that IP tasks can expressed in compact 

form as: 

 

    
              

       

                      , 

 

whence the equivalent sum-form of the dual function 

follows: 

 

               
           

    

                               
             . (24) 

 

Since the local Lagrangians (8) are continuous with 

respect to all arguments, from the compactness of 

         using the known results concerning the 

continuity of minimum of continuous functions on 

compact sets [29; Theorem 7.2] we conclude that the 

functions      
        defined by (10) are continuous on 

  ,          . In view of the same result the right 

hand size of (18) and (19) are continuous functions of  , 

whence the continuity of            
        defined by 

(22), (23) follows. Thus the continuity of       is 

resolved. Dual function       as minimum of the 

weighted sum (24) of local Lagrangians plus affine 

component       is concave function, for details see 

proof of Theorem 2.16 in [7]. The next result is valid  

Proposition 2. The dual function       (13) is 

continuous concave function in the space   .  

Having already proved that the dual function is 

continuous on the space   , we wish to show that the 

solution to the CP there exists. The proof is based on the

observation that the maximization of the continuous dual 

function on    can be restricted to some compact ball 

             , the radius      is defined by (27) 

and (28) below. 

 Note that on the basis of (24), (14) and (22) for 

     we have             . Let us consider an 

arbitrary        . Since, in view of (14), each term 

in the first sum of (24) is non-positive, taking into account 

(22) we have: 

 

                  
             . (25) 

 

Obviously, for any      at least one of the inner 

products            and            differs from zero. 

Without the loss of generality we assume that 

            . In view of (20), this means that      
   i.e.,         . Due to (21): 

 

           
              

       , 
 

which, in view of (25) and (17), yield: 

 

        
 

  
               

 

  
         

       

 
 

  
      .                                             (26) 

 

 Let us now prove that for any            , 
where           is closed annulus in   , i.e., a region 

bounded by two concentric circles of radiuses equal 

   and  : 

 

                           , 
 
there exists a positive coefficient       such that for any 

        the inequality: 

 

              
 

holds. Let:  

 

             
             

              

            
  ,    (27) 

 

where:     denotes the Euclidean norm in   . For any 

        we have, in particular, that: 

 

                                
              , 

 

and the inequality: 

 
           or            

 
from the third and seventh rows of (23), respectively, is 

satisfied. Thus, taking into account Proposition 1 (iii), the 

Schwarz inequality and (26) it is easy to check that:
              

                      
 

  
                

 

  
         

      
 

  
         

 

  
. 
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The assumed positivity of            combined with its 

continuity and compactness of the set           implies 

that there exists: 

 

                           . (28) 

 

From the above it follows that for any   such that 

        , we have: 

 

                .

 The uniqueness of IP solutions is guaranteed for any 

    , for example, if the sets         ,        , 

are strictly convex, so for example when the functions     
in (1) are strictly concave  [9,11,28],  see also [12].  Note, 

hat in view of (29) the uniqueness requirement from 

Theorem 3 can be restricted to              .Using 

[7; Lemmas 2.9 and 2.10] we can state for the case less 

restrictive than the uniqueness requirement from Theorem 

3, the following condition. 

Theorem 4. If the set      , where: 
 

             

                     
       

                
                    ,   

             

 

Thus the dual function maximization in (12) can be 

restricted to closed ball            of radius     , i.e., 

the equivalence hols: 

 

                                         , 

 (29) 
 

and the existence of    is guaranteed by continuity of 

     . Thus, we proved the next result. 

Theorem 2. The solution    of the CP (12) there exists. 

 

APPLICABILITY OF THE SCHEME 

 

 By a simple reasoning it is obvious that the scheme 

is applicable to the time-optimal control of the sequence 

of projects, i.e. ensures the determination of the optimal 

resource allocation, if and only if for every    being the 

solution of the dual problem (12): 

 

                           

 

is the solution to the original optimization task (5), (4), 

i.e.,                     is the vector of the optimal 

performance speeds of the activities in the successive time 

intervals. It is well known that if the saddle point of the 

Lagrangian                (6) there exists, then the 

dual approach can be successfully applied to solve (5), 

(4). If the solutions of IP tasks (10) and (11) are unique 

for any     , then the existence of a saddle point of the 

Lagrangian follows immediately from [8; Theorem 1, (ii) 

and (iii)]. Thus, the following theorem is valid. 

Theorem 3. If the solutions of the IP tasks (10) and (11) 

are unique for any     , then the two-level scheme is 

applicable to the problem of time-optimal control of  

a sequence of projects of activities.              .

consists of a single point for any    being the solution to 

CP task (12), then the scheme is applicable to optimal 

resource allocation problem.  

 Notice, that the last result requires only the 

uniqueness of the state vector          achieved for the 

performance speeds        , and the uniqueness of the 

vectors         is not required here. Thus, the optimal 

resource allocation does not have to be unique, if only the 

vector    of final states is uniquely determined. Also, the 

uniqueness of the dual problem solution is not necessary. 

Note finally, that the applicability of the scheme requires, 

after all, the existence of a sadle point of the Lagrangian 

(6). However, this is the crucial necessary applicability 

condition for most decentralized schemes, c.f., [7,8]. 

 

COMPUTATION OF THE OPTIMAL RESOURCE 

ALLOCATION 

 

 Assume that the applicability conditions are 

satisfied and the two-level scheme results in: 

 

              , 
 

where:           and             for        . Note, 

that in view of Proposition 1 by the known 

Caratheodory’s theorem, which asserts that any boundary 

point of the convex hull of compact set in    is a convex 

combination of its extreme points, the vectors     can be 

expressed as: 

 

                   
  

  
        ,   (30) 

 

where:          for         , and the nonnegative 

constants   
  are such that    

   
      for        .  

Let us introduce the vector function: 
             

                                                     
                    

           
                    

                  
 ,      (31) 
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where          are such that: 

 

               
 

and 

 

  
     

  
      for         ,          , 

 

and for the last time interval: 

 

  
     

  
           ,        , 

 

with   
   ,        . If the activities models     are 

strictly increasing, then: 

 

                , 
 

where     denotes the inverse function. By virtue of (30) 

and the definitions of the sets    and   , the conditions 

(i), (ii) are satisfied for       in (31), in view of (4) the 

given terminal state   is reached, thus       (31) is 

admissible resource allocation (control), and in view of 

Theorems 1 and 3 or 4 its optimality is guaranteed. The 

control (31) is generally not unique in the set of time-

optimal resource allocations. In view of the above, there 

is at least one piecewise constant time-optimal resource 

allocation with at most    
 
      discontinuity points. 

 
COMPUTATIONAL ALGORITHM 

 
 The computations should be arranged hierarchically 

in two-level structure, i.e., in each iteration of the 

maximization procedure of CP level the whole 

optimization procedures for solving IP independent tasks 

must be realized (see, Fig. 1). 

Step 1: Determine in the following two-level 

computations the optimal speeds             in the 

successive time intervals,        , and the optimal 

performance time   . 

Step 1.0: Choose the initial point    for numerical 

procedure applied to solve the coordination problem 

(12). 

Step 1.1: Let    be the  -th iterate in the numerical 

maximization procedure chosen to solve (12). For 

     solve     independent local resource 

allocation tasks (10) and the task (11) according to the 

chosen numerical optimization procedures and 

determine the performance speeds        ,   

       , and                 . 

Step 1.2: Using        ,         and        
compute, according to the numerical procedure 

selected to solve CP (12), the new vector of prices 

     which is the next approximation of   . If for 

     the stopping rule of the chosen maximization 

scheme is satisfied, e.g.: 

 

             

 

or 

 

     
         

      , 

 

where    and    are preselected small positives, put: 

 

           ,         

 

as the vectors of the optimal performance speeds and: 

 

          
 

as the optimal performance time of the multi–project 

and go to step 2. Otherwise return to step 1.1 and 

continue the computations for       . 

Step 2: Compute the vector of the optimal control       
according to (31). 

Remark 1. It is known that too large Lagrangian 

functions may be a drawback when applying numerical 

optimization, since large Lagrangians cannot completely 

prevent the constraint from violation. This disadvantage is 

overcome in the scheme. The equivalence (29) implies 

that CP can be replaced by dual function maximization 

with the constrain: 

 

             
 

imposed. However, the numerical studies suggest that it is 

unnecessary in most cases.  

Remark 2. The appealing feature of the scheme is that 

only the values of local Lagrangians      
          and 

       
              , not the IP solutions         and 

      , are used for    in successive iterations of the 

numerical procedure solving CP (see Fig. 1).  

Remark 3. In view of Proposition 1, the vectors resulting 

from the IP tasks in each iteration of numerical procedure 

solving CP are such that: 

 

                        . 

 

Thus     can be expressed as a convex combination of the 

form (30). Hence the respective control        of the form 

(31) exists and can be treated as an approximate solution 

of the overall problem.  

Remark 4. Since       is continuous concave function 

on    (Proposition 2), known sub-gradient methods of 

non-differentiable optimization [3,6] may be implemented 

for constrained maximization task (12). Also (10) and 

(11) (equivalently (18) or (19)) are convex optimization 

tasks and can be solved by using standard convex 

programming methods [3]. 

 Both in centralized (global) resource allocation by 

direct   minimization in (3) (or equivalently in (5)) 

subject to constraints (4) and in decentralized 

computations of the scheme, there are two types of 

constraints. The inequality constraints:  

 

    
    and     

     , 
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Fig. 1. Two-level decentralized procedure for optimal resource allocation  

 

which are imposed on every   
  and     

   
,         , 

        ,         in the convex combination 

representation (30) of    . The set of equality constraints 

is composed of convex combination coefficients sum: 

 

        
     

      

 

and the total resource usage constraints imposed on any 

      in (30). If the functions     are strictly increasing, i.e. 

   
   exists for each operation, then in view of Proposition 

1 the last constraints take the form:  

 

      
       

    
  
   

 
     ,          ,        . 

In the case of centralized resource allocation by direct   

minimization the total number of constraints (inequality 

and equality) is equal to: 

 

             
     

           , 

 

while the number of optimization variables: 

 

             
     

         . 

 

For decentralized scheme the number of constraints for IP 

(10): 

 

            
 ,          , 

 
and for the last local task (11) is: 

 

           . 

 

The respective numbers of optimization variables are as 

follows:  

 

 

Table 1. The numbers of optimization variables and constraints (inequalities and equalities together) in global and 

decentralized approaches; the meanings of symbols are explained in the text 

Each project composed of      operations 

  2 4 6 8 

   33 161 449 961 

   44 192 508 1056 

    8,25 8,24,48,81 8,24,48,80,120,169 8,24,48,80,120,168,224,289 

    11,29 11,29,55,89 11,29,55,89,131,181 11,29,55,89,131,181,239,305 

Each project composed of      operations 

  2 4 6 8 

   105 561 1625 3553 

   126 620 1738 3736 

    24,81 24,80,168,289 24,80,168,288,440,625 24,80,168,288,440,624,840,1089 

    29,89 29,89,181,305 29,89,181,305,461,649 29,89,181,305,461,649,869,1121 

  

          
    

      

    
           

            
               

            
             

      
       

                                 

         

Step 1.1 

Step 1.2 

Step 2 
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  for           

 

and 

 

           . 

 

To compare the computations for decentralized and global 

approaches the numbers of optimization variables and 

constraints are summarized in Table 1 and visualized in 

Fig. 2 and 3 for a few exemplary sequences of projects 

data. In Fig. 2 and 3 the average numbers of both the 

optimization variables and constraints for decentralized 

approach are given. The sequences of     projects, each 

project set composed of       activities, were included in 

the experiment. One can observe from Table 1 and Fig. 

2,3, that the mean numbers of the optimization variables 

and constraints are evidently reduced for decentralized 

approach in comparison to the primary global 

optimization task. 

 

FINAL REMARKS 

 

 Efficient time-decomposition algorithm for finding 

globally optimal resource allocation is proposed and 

discussed. The Lagrangian based time-decomposition 

approach is applied. It allows the global solution to be 

found in decentralized manner. The convexification 

technique is combined with the price coordination in 

order to guarantee its applicability. The necessary and 

sufficient applicability conditions are derived and 

analyzed. Taking into account the specific properties of IP 

and CP tasks it is proved that the scheme is applicable to 

time-optimal resource allocation even if the solutions of 

lower level and coordination tasks are not unique. The 

applicability conditions suggest that the scheme can be 

successfully applied to find the optimal resource 

allocation for a wide class of activity models, including, 

in particular the commonly used in project modelling 

practice models being concave with respect to the 

resource amount. The considerable decrease on the mean 

numbers of both the optimization variables and 

constraints are reported for the scheme. An alternative 

approach of local optimization of a sequence of project is 

proposed in [11], according to which the choice of the 

optimal control is made at every moments    of the 

successive project appearance for all the activities 

actually at performance and the final states of activities 

that are equal to given terminal states minus the states so 

far reached. However, for control determined by this 

algorithm the performance time is, in general, greater than 

the globally optimal performance time determined by 

two-level scheme. A considerable range of technical and 

economic applications should be pointed out. The main 

fields are the following: the allocation of working power 

of building concern among enterprises in the course of 

building (cf., [9]), the allocation of a financial outlay 

among projects under constrained intensity of investing 

[1,2,5,6,9,23], the allocation of a common primary 

memory among independent tasks appearing at different 

times in a multiprocessor systems (cf., [1,21,24,27]), can 

be also applied in decision support intelligent systems 

[22], where different resources with constrained 

consumption must be optimized. 

 

Fig. 2. The numbers of optimization constraints and variables in global and decentralized approach;        ,         

and            ,             – maximal and average numbers of constraints and decision variables for IP tasks,    and 

   – the total numbers of constraints and optimization variables for global approach, number of project activities 
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Fig. 3. The numbers of optimization constraints   ,        ,             and variables   ,        ,             in 

global and decentralized approaches, number of project activities      
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