PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

First principle analysis of electronic, optical and thermoelectric characteristics of XBiO3 (X = Al, Ga, In) perovskites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The perovskites XBiO3 (X = Al, Ga, In) have been studied in terms of mechanical, optical and thermoelectric behavior for energy harvesting application. Density functional theory is applied to study electronic, optical and thermoelectric properties of the studied materials. Structural, mechanical and thermodynamic stabilities are confirmed from the tolerance factor, Born mechanical stability and formation energy/specific heat capacity. Poisson and Plough ratios show the studied materials are ductile and have ability to withstand pressure. Band structure analysis shows the indirect band gap 3.0/2.1/1.0 eV for ABO/GBO/IBO. A complete set of optical spectra is reported by dielectric constants, refractive index, optical conduction, absorption of light and optical loss energy. Shifting of maximum absorption band to visible region increases the potential of perovskites XBiO3. Transport characteristics are also investigated by electrical conductivity, Seebeck coefficient and figure of merit.
Twórcy
autor
  • Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
  • Basic and Applied Scientific Research Center, Imam Abdurrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
autor
  • Department of Physics, Division of Science and Technology, University of Education, Lahore, Pakistan
autor
  • Basic and Applied Scientific Research Center, Imam Abdurrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
  • Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
autor
  • Center for Advance Studies in Physics, GC University Lahore, Pakistan
autor
  • Department of Physics, Division of Science and Technology, University of Education, Lahore, Pakistan
autor
  • Chemical Engineering Department, College of Engineering, King Saud University Riyadh, Saudi Arabia
Bibliografia
  • [1] Orera, M. V. & Merino, R. I. Ceramics with photonic and optical applications. Bol. Soc. Esp. Ceram. Vidr 54, 1-10 (2015).
  • [2] Sołtys, M., Gorny, A., Pisarska, J. & Pisarski, W. A. Electrical and optical properties of glasses and glass-ceramics. J. Non-Crystalline Solids 498, 352-363 (2018)
  • [3] Chentg, A., Zhig, Y. & Baa, Y. A. study of BaTiO3-BaPbO3 ceramic composites, Phys. Condens. Matter, 6, 7921-7925 (1994).
  • [4] Noor, N. A., Hassan, M., Rashid, M., Alay-e-Abbas, S. M. & A. Laref. Systematic study of elastic, electronic, optical and thermoelectric properties of cubic BiBO3 and BiAlO3 compounds at different pressure by using ab-initio calculations. Materials Research Bulletin 97, 436-443 (2018).
  • [5] Kim, H. S., Liu, W., Chen, G., Chu, C. W. & Rena, Z. Relationship between thermoelectric figure of merit and energy conversion efficiency. PNAS 112, 8205-8210 (2015).
  • [6] Wunderlich, W., Mori, T. & Sologub, O. SPS-sintered NaTaO3-Fe2O3 composite exhibits enhanced Seebeck coefficient and electric current, Mater. Renew. Sustain. Energy 1, 3-21 (2014).
  • [7] Zhao, Y. X., Liu, D. R., Li, F. F., Yang, D. F. & Jiang, Y. S. Preparation, characterization and photocatalytic activity of N-doped NaTaO3 nanocubes. Powder Technol. 214, 155-160 (2011).
  • [8] Yang, M., Huang, X., Yan, S., Li, Z., Yu, T. & Zou, Z. Improved hydrogen eVolution activities under visible light irradiation over NaTaO3 co doped with lanthanum and chromium. Mater. Chem. Phys. 121 (3), 506-510 (2010).
  • [9] Liu, D. R., Wei, C. D., Xue, B., Zhang, X. G. & Jiang, Y. S. Synthesis and photocatalytic activity of N-doped NaTaO3 compounds calcined at low temperature. J. Hazard. Mater. 182, 50-54 (2010).
  • [10] Sfirloaga, P., Marin, C. N., Malaescu, I. & Vlazan, P. The electrical performance of ceramics materials with perovskite structure doped with metallic ions, Ceram. Int. 42 (16), 18960-18964 (2016).
  • [11] Ji, J. H., Shin, D. J., Kim, J. & HyukKoh, J. BiScO3-PbTiO3 piezoelectric ceramics with Bi excess for energy harvesting applications under high temperature. Ceram. Int. (2019) https://doi.org/10.1016/j.ceramint.2019.10.117
  • [12] Meregalli, V. & Savrasov, S. Y. Electron-phonon coupling and properties of doped BaBiO3 Phys. Rev. B 57, 14453-14469 (1998).
  • [13] Shirai, M., Suzuki, N. & Motizuki, K. Electron-lattice interaction and superconductivity in BaPb1-xBixO3 and BaxK1-xBiO3. J. Phys. Condens. Matter. 2, 3553 (1990).
  • [14] Rubel, M. H. K., Miura, A., Takei, T., Kumada, N., Ali, M. M., Nagao, M., Watauchi, S., Tanaka, I., Oka, K., Azuma, M., Magome, E., Moriyoshi, C., Kuroiwa, Y. & Azharul Islam, A. K. M. Superconducting Double Perovskite Bismuth Oxide Prepared by a Low-Temperature Hydrothermal Reaction, Angew. Chem. Int. Ed. 53, 3599 -3603 (2014).
  • [15] He, J., Liu, Y. F. & Funahashi, R. Oxide thermoelectrics: The challenges, progress, and outlook. J. Mater. Res 26, 1762-1772 (2011).
  • [16] Koumoto, K., Funahashi, R., Guilmeau, E., Miyazaki, Y., Weidenkaff, A., Wang, Y., Wan, C., Thermoelectric Ceramics for Energy Harvesting. J. Am. Ceram. Soc. 96, 1-23 (2013).
  • [17] Srivastava, D., Azough, F., Freer, R., Combe, E., Funahashi, R., Kepaptsoglou, D. M., Ramasse, Q. M., Molinari, M., Yeandel, S. R., Baran, J. D. & Parker, S. C. Crystal structure and thermoelectric properties of Sr-Mo substituted CaMnO3: a combined experimental and computational study. J. Mater. Chem. C 3, 12245-12259 (2015).
  • [18] Blaha, P., Schwarz, K., Sorantin, P. & Trickey, S. K. Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 339 (1990).
  • [19] Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. WIEN2K, An Augmented Plane Wave + local Orbitals Program for Calculating Crystal Properties, Karl Heinz Schwarz, Techn. Universitat Wien, Austria. 2001.
  • [20] Tran, F. & Blaha, P. Accurate Band Gaps of Semiconductors and Insulators with a Semi-local Exchange-Correlation Potential. Phys. Rev. Lett. 102, 226401 (2009).
  • [21] Rakita, Y., Cohen, S. R., Kedem, N. K. & Hodes, G. Mechanical properties of APbX 3 (A = Cs or CH3NH3; X = I or Br) perovskite single crystals MRS Communications, 5, 623-629 (2015).
  • [22] Wooten, F. Optical Properties of Solids. Academic Press, New York. 1972.
  • [23] Madsen, G. K. H., Schwarz, K. & Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006).
  • [24] Mahmood, Q., Hassan, M. & Noor, N. A. Systematic study of roomtemperature ferromagnetism and the optical response of Zn1-x TM x S/Se (TM  =  Mn, Fe, Co, Ni) ferromagnets: first-principle approach. J. Phys.: Condens. Matter, 28, 506001 (2016).
  • [25] Sabir, B., Murtaza, G., Mahmood, Q., Ahmad, R. & Bhamu, K.C. First principles investigations of electronics, magnetic, and thermoelectric properties of rare earth based PrYO3 (Y=Cr, V) perovskites. Current Appl. Phys. 17, 1539-1546 (2017).
  • [26] Young, J. & Rondinelli, J. Octahedral Rotation Preferences in Perovskite Iodides and Bromides. Phys. Chem. Lett. 7, 918-922 (2016).
  • [27] Mahmood, Q., Yaseen, M., Haq, B. U., Laref, A. & Nazir, A. The study of mechanical and thermoelectric behavior of MgXO3 (X = Si, Ge, Sn) for energy applications by DFT. Chem. Phys. 524, 106-112 (2019).
  • [28] Mahmood, Q., Haq, B. U., Yaseen, M., Ramay, S. M., Ashiq, M. G. B. & Mahmood, A. The first-principle study of mechanical, optical and thermoelectric properties of SnZrO3 and SnHfO3 for renewable energy applications. Solid State Commun. 292, 17-23 (2019).
  • [29] Ji, X., Yu, Y., Ji, J., Long, J., Chen, J. & Liu, D. Theoretical studies of the pressure-induced phase transition and elastic properties of BeS. J. Alloy. Compd. 623, 304 (2015).
  • [30] Mishra, V., Kumar, A., Sagdeo, A. & Sagdeo, P. R. Comparative structural and optical studies on pellet and powder samples of BaTiO3 near phase transition temperature. Ceram. Int. 46, 3250–3256 (2020). https://doi.org/10.1016/j.ceramint.2019.10.030.
  • [31] Hassn, M., Shahid, A. & Mahmood, Q. Structural, electronic, optical and thermoelectric investigations of antiperovskites A3SnO (A = Ca, Sr, Ba) using density functional theory. Solid State Commun. 270, 92-98 (2018).
  • [32] Hassan, M., Arshad, I. & Mahmood, Q. Semicond. Computational study of electronic, optical and thermoelectric properties of X3PbO (X = Ca, Sr, Ba) anti-perovskites. Sci. Technol 32, 115002 (2017).
  • [33] Moghe, D., Wang, L., Traverse, C. J., Redoute, A., Sponsellerb, M., Brown, P. R., Bulovic, V. & Lunt, R. All vapor-deposited lead-free doped CsSnBr3 planar solar cells. Nano Energy 28, 469-474 (2016).
  • [34] Gupta, S., Bendikov, T., Hodes, G. & Cahen, D. CsSnBr3 A LeadFree Halide perovskites for Long-Term Solar Cell Application: Insights on SnF2 Addition. ACS Energy Lett. 5, 1028-1033 (2016).
  • [35] Gupta, S., Bendikov, T., Hodes, G. & D. Cahen, CsSnBr3, A LeadFree Halide Perovskites for Long-Term Solar Cell Application: Insights on SnF2 Addition. ACS Energy Lett. 1, 1028-1033 (2016).
  • [36] Cao, P., Yang, B., Zheng, F., Wang, L. & Zou, J. High stability of silica-wrapped CsPbBr3 perovskite quantum dots for light emitting application. Ceram. Int. 46, 3882–3888 (2020). https://doi.org/10.1016/j.ceramint.2019.10.114
  • [37] Jiang, S., Fang, Y., Li, R., Xiao, H., Crowley, J., Wang, C., White, T. J., Goddard III, W.A., Wang, Z., Baikie, T. & Fang, J. PressureDependent Polymorphism and Band-Gap Tuning of Methyl ammonium Lead Iodide perovskites. Angew. Chem. Int. Ed 55, 6540 (2016).
  • [38] Haq, B. U., AlFaify, S., Laref, A., Ahmed, R., Butt, F. K., Chaudhry, A. R., Ur Rehman, S. & Mahmood, Q. Optoelectronic properties of new direct bandgap polymorphs of single-layered Germanium sulfide. Ceram. Int. 45, 18073-18078 (2019).
  • [39] Noor, N. A., Mahmood, Q., Rashid, M., Haq, B. U. & Laref, A. The pressure-induced mechanical and optoelectronic behavior of cubic perovskite PbSnO3 via ab-initio investigations. Ceram. Int. 44, 13750-13756 (2018).
  • [40] Mahmood, Q., Ashraf, A. & Hassan, M. Investigations of optical and thermoelectric response of direct band gap Ca3XO (X = Si, Ge) antiperovskites stabilized in cubic and orthorhombic phases. Indian J. Phys. 92, 865-874 (2018).
  • [41] Penn, D. R. Wave-Number-Dependent Dielectric Function of Semiconductors. Phys. Rev. 128, 2093 (1962).
  • [42] Cai, M., Yin, Z. & Zhang, M. First-principles study of optical properties of barium titanate. Appl. Phys. Lett. 83, 2805 (2003).
  • [43] Zhang, Y., Li, L., Bai, W., Shen, B., Zhai, J. & Li, B. Effect of CaZrO3 on phase structure and electrical properties of KNN-based lead-free ceramics. RSC Adv. 5, 19647-19651 (2015).
  • [44] Madsen, G. K. H. & Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun 175, 67-71 (2006).
  • [45] Murtaza, G. & Ahmad, I. First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M = Cl, Br, I). Physica. B 406, 3222-3229 (2011).
  • [46] Reshak, A. H., Khan, S. A. & Auluck, S. Thermoelectric properties of a single graphene sheet and its derivatives. J. Mater. Chem. C 2, 2346-2352 (2014).
  • [47] Reshak, A. H. & Auluck, S. Thermoelectric properties of NowotnyJuza NaZnX (X= P, As and Sb) compounds. Compute. Mater. Sci. 96, 90-95 (2015).
  • [48] Toshio, M. Y., Uedahiroshi, K. K. & Hosono, Y. H. Hightemperature thermoelectric properties of La-doped BaSnO3 ceramics. Mater. Sci. Eng. B 173, 29-32 (2010).
  • [49] Zhao, D., Chen, J., Ren, Z., Chen, J., Song, Q. F., Zhang, Q., Chen, N. & Jiang, Y. Thermoelectric transport and magnetoresistance of electrochemical deposited Bi2Te3 films at micrometer thickness. Ceram. Int. 46, 3339-3344 (2019).
  • [50] Khan, Tahsin, T. & Chul, U. S. Thermoelectric Properties of the perovskites-Type Oxide SrTi1-xNbxO3 Synthesized by Solid-State Reaction Method. Electron. Mater. Lett. 14, 336-341 (2018).
  • [51] Oyama, T., Muta, H., Uno, M. & Yamanaka, S. Thermoelectric properties of perovskites type barium molybdate. J. Alloy Compd. 372, 65-69 (2004).
  • [52] Varshni, Y. P.Temperature dependence of the energy gap in semiconductors. Physica 34, 149-154 (1967).
  • [53] Bhamu, K.C., Soni, A. & Sahariya, J. Revealing optoelectronic and transport properties of potential perovskites Cs2PdX6 (X = Cl, Br): A probe from density functional theory (DFT). Sol. Energy 162, 336-343 (2018).
Uwagi
1. The authors (Shahid M. Ramay and Asif Mahmood) would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this Research group No. RG 1435-004.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f700379e-bb50-4600-8668-accc798a8508
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.